{"id":"https://openalex.org/W4392182192","doi":"https://doi.org/10.48550/arxiv.2402.15134","title":"Deep Coupling Network For Multivariate Time Series Forecasting","display_name":"Deep Coupling Network For Multivariate Time Series Forecasting","publication_year":2024,"publication_date":"2024-02-23","ids":{"openalex":"https://openalex.org/W4392182192","doi":"https://doi.org/10.48550/arxiv.2402.15134"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2402.15134","pdf_url":"http://arxiv.org/pdf/2402.15134","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2402.15134","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5102950239","display_name":"Kun Yi","orcid":"https://orcid.org/0000-0002-9980-6033"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yi, Kun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100784844","display_name":"Qi Zhang","orcid":"https://orcid.org/0000-0002-1037-1361"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Qi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5050350085","display_name":"Hui He","orcid":"https://orcid.org/0000-0001-5515-2739"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"He, Hui","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5034376285","display_name":"Kaize Shi","orcid":"https://orcid.org/0000-0003-3561-3627"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shi, Kaize","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101541061","display_name":"Liang Hu","orcid":"https://orcid.org/0000-0001-8588-2177"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hu, Liang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100651298","display_name":"Ning An","orcid":"https://orcid.org/0000-0003-3317-5299"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"An, Ning","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5082774439","display_name":"Zhendong Niu","orcid":"https://orcid.org/0000-0002-0576-7572"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Niu, Zhendong","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.969,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.969,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C161584116","wikidata":"https://www.wikidata.org/wiki/Q1952580","display_name":"Multivariate statistics","level":2,"score":0.8333154},{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.7146753},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.5322758},{"id":"https://openalex.org/C131584629","wikidata":"https://www.wikidata.org/wiki/Q4308705","display_name":"Coupling (piping)","level":2,"score":0.5268385},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.48943344},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.44149405},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.41769382},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.31273928},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.239714},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.2394749},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.13784927},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.059802383},{"id":"https://openalex.org/C78519656","wikidata":"https://www.wikidata.org/wiki/Q101333","display_name":"Mechanical engineering","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2402.15134","pdf_url":"http://arxiv.org/pdf/2402.15134","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2402.15134","pdf_url":"http://arxiv.org/pdf/2402.15134","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4390961098","https://openalex.org/W2622688551","https://openalex.org/W2406638334","https://openalex.org/W2118640767","https://openalex.org/W2024770159","https://openalex.org/W1991765889","https://openalex.org/W1990205660","https://openalex.org/W1990068454","https://openalex.org/W1861848143","https://openalex.org/W1550175370"],"abstract_inverted_index":{"Multivariate":[0],"time":[1,28,51,127],"series":[2,29,52,128],"(MTS)":[3],"forecasting":[4,58],"is":[5,17],"crucial":[6],"in":[7],"many":[8],"real-world":[9,157],"applications.":[10],"To":[11],"achieve":[12],"accurate":[13],"MTS":[14,106],"forecasting,":[15,107],"it":[16],"essential":[18],"to":[19,84,117],"simultaneously":[20,85],"consider":[21],"both":[22],"intra-":[23,37,65,90,122],"and":[24,38,42,49,66,75,91,123,142],"inter-series":[25,39,67,92,124],"relationships":[26,40,68,125],"among":[27,126],"data.":[30],"However,":[31],"previous":[32],"work":[33],"has":[34,43],"typically":[35],"modeled":[36],"separately":[41],"disregarded":[44],"multi-order":[45,89,121],"interactions":[46],"present":[47],"within":[48],"between":[50],"data,":[53],"which":[54,110],"can":[55],"seriously":[56],"degrade":[57],"accuracy.":[59],"In":[60],"this":[61],"paper,":[62],"we":[63,98],"reexamine":[64],"from":[69],"the":[70,87,96,120,169],"perspective":[71],"of":[72,112],"mutual":[73],"information":[74],"accordingly":[76],"construct":[77],"a":[78,100,113,131],"comprehensive":[79],"relationship":[80],"learning":[81],"mechanism":[82,115],"tailored":[83],"capture":[86],"intricate":[88],"couplings.":[93],"Based":[94],"on":[95,155],"mechanism,":[97],"propose":[99],"novel":[101],"deep":[102],"coupling":[103,114],"network":[104],"for":[105],"named":[108],"DeepCN,":[109],"consists":[111],"dedicated":[116],"explicitly":[118],"exploring":[119],"data":[129],"concurrently,":[130],"coupled":[132],"variable":[133,140],"representation":[134],"module":[135,145],"aimed":[136],"at":[137],"encoding":[138],"diverse":[139],"patterns,":[141],"an":[143],"inference":[144],"facilitating":[146],"predictions":[147],"through":[148],"one":[149],"forward":[150],"step.":[151],"Extensive":[152],"experiments":[153],"conducted":[154],"seven":[156],"datasets":[158],"demonstrate":[159],"that":[160],"our":[161],"proposed":[162],"DeepCN":[163],"achieves":[164],"superior":[165],"performance":[166],"compared":[167],"with":[168],"state-of-the-art":[170],"baselines.":[171]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4392182192","counts_by_year":[],"updated_date":"2025-04-21T13:35:19.906215","created_date":"2024-02-27"}