{"id":"https://openalex.org/W4392085088","doi":"https://doi.org/10.48550/arxiv.2402.13379","title":"Referee-Meta-Learning for Fast Adaptation of Locational Fairness","display_name":"Referee-Meta-Learning for Fast Adaptation of Locational Fairness","publication_year":2024,"publication_date":"2024-02-20","ids":{"openalex":"https://openalex.org/W4392085088","doi":"https://doi.org/10.48550/arxiv.2402.13379"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2402.13379","pdf_url":"http://arxiv.org/pdf/2402.13379","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2402.13379","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5104247847","display_name":"Weiye Chen","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Weiye","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102202220","display_name":"Yiqun Xie","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xie, Yiqun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5001445783","display_name":"Xiaowei Jia","orcid":"https://orcid.org/0000-0001-8544-5233"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jia, Xiaowei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5093984265","display_name":"Erhu He","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"He, Erhu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5112973587","display_name":"Han Bao","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bao, Han","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5093984266","display_name":"Bang An","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"An, Bang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5087349532","display_name":"Xun Zhou","orcid":"https://orcid.org/0000-0002-2403-9060"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhou, Xun","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10883","display_name":"Ethics and Social Impacts of AI","score":0.8047,"subfield":{"id":"https://openalex.org/subfields/3311","display_name":"Safety Research"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T10883","display_name":"Ethics and Social Impacts of AI","score":0.8047,"subfield":{"id":"https://openalex.org/subfields/3311","display_name":"Safety Research"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T12394","display_name":"Insurance and Financial Risk Management","score":0.7162,"subfield":{"id":"https://openalex.org/subfields/2002","display_name":"Economics and Econometrics"},"field":{"id":"https://openalex.org/fields/20","display_name":"Economics, Econometrics and Finance"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T14260","display_name":"Impact of AI and Big Data on Business and Society","score":0.6759,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/algorithmic-bias","display_name":"Algorithmic Bias","score":0.535887},{"id":"https://openalex.org/keywords/machine-learning-algorithms","display_name":"Machine Learning Algorithms","score":0.534155},{"id":"https://openalex.org/keywords/machine-learning","display_name":"Machine Learning","score":0.508752}],"concepts":[{"id":"https://openalex.org/C139807058","wikidata":"https://www.wikidata.org/wiki/Q352374","display_name":"Adaptation (eye)","level":2,"score":0.7622829},{"id":"https://openalex.org/C175444787","wikidata":"https://www.wikidata.org/wiki/Q39072","display_name":"Microeconomics","level":1,"score":0.52490246},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.44120318},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.33692735},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.32380784},{"id":"https://openalex.org/C169760540","wikidata":"https://www.wikidata.org/wiki/Q207011","display_name":"Neuroscience","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2402.13379","pdf_url":"http://arxiv.org/pdf/2402.13379","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2402.13379","pdf_url":"http://arxiv.org/pdf/2402.13379","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4391913857","https://openalex.org/W2748952813","https://openalex.org/W2530322880","https://openalex.org/W2478288626","https://openalex.org/W2390279801","https://openalex.org/W2382290278","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2350741829","https://openalex.org/W2001405890"],"abstract_inverted_index":{"When":[0],"dealing":[1],"with":[2,138,170],"data":[3],"from":[4,149],"distinct":[5],"locations,":[6,62,99],"machine":[7],"learning":[8,85],"algorithms":[9],"tend":[10],"to":[11,69,93,119,147,159],"demonstrate":[12],"an":[13,101,126],"implicit":[14],"preference":[15],"of":[16,30,45,76,90,104,110,133,141],"some":[17],"locations":[18,92],"over":[19,61],"the":[20,27,31,71,84,108,131,134,156,163,189],"others,":[21],"which":[22,180],"constitutes":[23],"biases":[24,38,52,60,106],"that":[25,129],"sabotage":[26],"spatial":[28,142,151],"fairness":[29,132,161,186],"algorithm.":[32],"This":[33],"unfairness":[34],"can":[35,183],"easily":[36],"introduce":[37],"in":[39,48,53],"subsequent":[40],"decision-making":[41],"given":[42,91],"broad":[43],"adoptions":[44],"learning-based":[46],"solutions":[47],"practice.":[49],"However,":[50],"locational":[51,66,105,185],"AI":[54],"are":[55],"largely":[56],"understudied.":[57],"To":[58],"mitigate":[59],"we":[63],"propose":[64],"a":[65,77,95,115,122,139,194],"meta-referee":[67],"(Meta-Ref)":[68],"oversee":[70],"few-shot":[72],"meta-training":[73],"and":[74,107,125,177],"meta-testing":[75],"deep":[78],"neural":[79],"network.":[80],"Meta-Ref":[81,128,144,182],"dynamically":[82],"adjusts":[83],"rates":[86],"for":[87],"training":[88,117,157],"samples":[89,148],"advocate":[94],"fair":[96],"performance":[97],"across":[98],"through":[100],"explicit":[102],"consideration":[103],"characteristics":[109],"input":[111],"data.":[112],"We":[113,166],"present":[114],"three-phase":[116],"framework":[118],"learn":[120],"both":[121],"meta-learning-based":[123],"predictor":[124],"integrated":[127],"governs":[130],"model.":[135],"Once":[136],"trained":[137],"distribution":[140],"tasks,":[143],"is":[145],"applied":[146],"new":[150],"tasks":[152],"(i.e.,":[153],"regions":[154],"outside":[155],"area)":[158],"promote":[160],"during":[162],"fine-tune":[164],"step.":[165],"carried":[167],"out":[168],"experiments":[169],"two":[171],"case":[172],"studies":[173],"on":[174],"crop":[175],"monitoring":[176],"transportation":[178],"safety,":[179],"show":[181],"improve":[184],"while":[187],"keeping":[188],"overall":[190],"prediction":[191],"quality":[192],"at":[193],"similar":[195],"level.":[196]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4392085088","counts_by_year":[],"updated_date":"2024-12-05T01:14:23.948707","created_date":"2024-02-23"}