{"id":"https://openalex.org/W4392019804","doi":"https://doi.org/10.48550/arxiv.2402.12598","title":"Graph-based Virtual Sensing from Sparse and Partial Multivariate\n Observations","display_name":"Graph-based Virtual Sensing from Sparse and Partial Multivariate\n Observations","publication_year":2024,"publication_date":"2024-02-19","ids":{"openalex":"https://openalex.org/W4392019804","doi":"https://doi.org/10.48550/arxiv.2402.12598"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2402.12598","pdf_url":"https://arxiv.org/pdf/2402.12598","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2402.12598","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5082909966","display_name":"Giovanni de Felice","orcid":"https://orcid.org/0000-0002-8550-718X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"De Felice, Giovanni","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5084050368","display_name":"Andrea Cini","orcid":"https://orcid.org/0000-0003-3219-9360"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Cini, Andrea","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059650498","display_name":"Daniele Zambon","orcid":"https://orcid.org/0000-0003-3722-9784"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zambon, Daniele","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067994724","display_name":"Vladimir V. Gusev","orcid":"https://orcid.org/0000-0002-2815-607X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gusev, Vladimir V.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5005003786","display_name":"Cesare Alippi","orcid":"https://orcid.org/0000-0003-3819-0025"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Alippi, Cesare","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10326","display_name":"Indoor and Outdoor Localization Technologies","score":0.944,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10326","display_name":"Indoor and Outdoor Localization Technologies","score":0.944,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C161584116","wikidata":"https://www.wikidata.org/wiki/Q1952580","display_name":"Multivariate statistics","level":2,"score":0.8074964},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.54379207},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5404229},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.35560924},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.24787182},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.22492412}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2402.12598","pdf_url":"https://arxiv.org/pdf/2402.12598","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2402.12598","pdf_url":"https://arxiv.org/pdf/2402.12598","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4391913857","https://openalex.org/W2748952813","https://openalex.org/W2478288626","https://openalex.org/W2406638334","https://openalex.org/W2390279801","https://openalex.org/W2382290278","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2350741829","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Virtual":[0],"sensing":[1,157],"techniques":[2],"allow":[3],"for":[4,88],"inferring":[5,86],"signals":[6],"at":[7,19,94],"new":[8],"unmonitored":[9],"locations":[10,96],"by":[11,50,91],"exploiting":[12,92],"spatio-temporal":[13],"measurements":[14],"coming":[15],"from":[16],"physical":[17,35],"sensors":[18],"different":[20,155],"locations.":[21,149],"However,":[22],"as":[23,146,148],"the":[24,54,82,124,165],"sensor":[25],"coverage":[26],"becomes":[27],"sparse":[28],"due":[29],"to":[30,40,97,110,141,164],"costs":[31],"or":[32],"other":[33,95],"constraints,":[34],"proximity":[36],"cannot":[37],"be":[38,67],"used":[39,140],"support":[41],"interpolation.":[42],"In":[43],"this":[44,48,75],"paper,":[45],"we":[46],"overcome":[47],"challenge":[49],"leveraging":[51],"dependencies":[52,143],"between":[53,144],"target":[55],"variable":[56],"and":[57,81,114],"a":[58,106,116,134],"set":[59],"of":[60,72,85],"correlated":[61],"variables":[62,101,145],"(covariates)":[63],"that":[64,138],"can":[65,102],"frequently":[66],"associated":[68],"with":[69],"each":[70],"location":[71],"interest.":[73],"From":[74],"viewpoint,":[76],"covariates":[77],"provide":[78],"partial":[79],"observability,":[80],"problem":[83],"consists":[84],"values":[87],"unobserved":[89],"channels":[90],"observations":[93],"learn":[98,142],"how":[99],"such":[100,112],"correlate.":[103],"We":[104],"introduce":[105],"novel":[107],"graph-based":[108],"methodology":[109],"exploit":[111],"relationships":[113],"design":[115],"graph":[117,136],"deep":[118],"learning":[119],"architecture,":[120],"named":[121],"GgNet,":[122],"implementing":[123],"framework.":[125],"The":[126],"proposed":[127],"approach":[128],"relies":[129],"on":[130],"propagating":[131],"information":[132],"over":[133],"nested":[135],"structure":[137],"is":[139,151],"well":[147],"GgNet":[150],"extensively":[152],"evaluated":[153],"under":[154],"virtual":[156],"scenarios,":[158],"demonstrating":[159],"higher":[160],"reconstruction":[161],"accuracy":[162],"compared":[163],"state-of-the-art.":[166]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4392019804","counts_by_year":[],"updated_date":"2025-01-18T07:37:51.671004","created_date":"2024-02-22"}