{"id":"https://openalex.org/W4391988055","doi":"https://doi.org/10.48550/arxiv.2402.12098","title":"Towards Explainable LiDAR Point Cloud Semantic Segmentation via Gradient\n Based Target Localization","display_name":"Towards Explainable LiDAR Point Cloud Semantic Segmentation via Gradient\n Based Target Localization","publication_year":2024,"publication_date":"2024-02-19","ids":{"openalex":"https://openalex.org/W4391988055","doi":"https://doi.org/10.48550/arxiv.2402.12098"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2402.12098","pdf_url":"http://arxiv.org/pdf/2402.12098","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2402.12098","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5092778248","display_name":"Abhishek Kuriyal","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kuriyal, Abhishek","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5071171268","display_name":"Vaibhav Kumar","orcid":"https://orcid.org/0000-0002-0047-0681"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kumar, Vaibhav","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.912486,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":78,"max":88},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11164","display_name":"Remote Sensing and LiDAR Applications","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11164","display_name":"Remote Sensing and LiDAR Applications","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T14339","display_name":"Image Processing and 3D Reconstruction","score":0.9788,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9688,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C131979681","wikidata":"https://www.wikidata.org/wiki/Q1899648","display_name":"Point cloud","level":2,"score":0.7907108},{"id":"https://openalex.org/C51399673","wikidata":"https://www.wikidata.org/wiki/Q504027","display_name":"Lidar","level":2,"score":0.78042597},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.72080547},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.56825364},{"id":"https://openalex.org/C28719098","wikidata":"https://www.wikidata.org/wiki/Q44946","display_name":"Point (geometry)","level":2,"score":0.5348137},{"id":"https://openalex.org/C79974875","wikidata":"https://www.wikidata.org/wiki/Q483639","display_name":"Cloud computing","level":2,"score":0.5292593},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4805239},{"id":"https://openalex.org/C62649853","wikidata":"https://www.wikidata.org/wiki/Q199687","display_name":"Remote sensing","level":1,"score":0.45844057},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.43557772},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.2951438},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.11665338},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.07535866},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2402.12098","pdf_url":"http://arxiv.org/pdf/2402.12098","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2402.12098","pdf_url":"http://arxiv.org/pdf/2402.12098","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4319837668","https://openalex.org/W4319317934","https://openalex.org/W4308071650","https://openalex.org/W4293094720","https://openalex.org/W4281783339","https://openalex.org/W3188333020","https://openalex.org/W2956374172","https://openalex.org/W2901265155","https://openalex.org/W2739701376","https://openalex.org/W2114282491"],"abstract_inverted_index":{"Semantic":[0],"Segmentation":[1],"(SS)":[2],"of":[3,74,99,106],"LiDAR":[4],"point":[5,32],"clouds":[6],"is":[7,67],"essential":[8],"for":[9,29,47,125],"many":[10],"applications,":[11],"such":[12],"as":[13],"urban":[14],"planning":[15],"and":[16,69,79,121],"autonomous":[17],"driving.":[18],"While":[19],"much":[20],"progress":[21],"has":[22],"been":[23],"made":[24],"in":[25,51,96],"interpreting":[26,31],"SS":[27,34,100,116],"predictions":[28,35,120],"images,":[30],"cloud":[33],"remains":[36],"a":[37,43,72],"challenge.":[38],"This":[39,109],"paper":[40],"introduces":[41],"pGS-CAM,":[42],"novel":[44],"gradient-based":[45],"method":[46],"generating":[48],"saliency":[49],"maps":[50],"neural":[52],"network":[53],"activation":[54],"layers.":[55],"Inspired":[56],"by":[57,102],"Grad-CAM,":[58],"which":[59],"uses":[60],"gradients":[61],"to":[62,112],"highlight":[63],"local":[64],"importance,":[65],"pGS-CAM":[66,90],"robust":[68],"effective":[70],"on":[71],"variety":[73],"datasets":[75],"(SemanticKITTI,":[76],"Paris-Lille3D,":[77],"DALES)":[78],"3D":[80],"deep":[81],"learning":[82,95],"architectures":[83,101],"(KPConv,":[84],"RandLANet).":[85],"Our":[86],"experiments":[87],"show":[88],"that":[89],"effectively":[91],"accentuates":[92],"the":[93,104],"feature":[94],"intermediate":[97],"activations":[98],"highlighting":[103],"contribution":[105],"each":[107],"point.":[108],"allows":[110],"us":[111],"better":[113],"understand":[114],"how":[115],"models":[117],"make":[118],"their":[119],"identify":[122],"potential":[123],"areas":[124],"improvement.":[126],"Relevant":[127],"codes":[128],"are":[129],"available":[130],"at":[131],"https://github.com/geoai4cities/pGS-CAM.":[132]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4391988055","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-04-10T08:18:34.858504","created_date":"2024-02-21"}