{"id":"https://openalex.org/W4391940817","doi":"https://doi.org/10.48550/arxiv.2402.10398","title":"Prompt Learning for Multi-Label Code Smell Detection: A Promising\n Approach","display_name":"Prompt Learning for Multi-Label Code Smell Detection: A Promising\n Approach","publication_year":2024,"publication_date":"2024-02-15","ids":{"openalex":"https://openalex.org/W4391940817","doi":"https://doi.org/10.48550/arxiv.2402.10398"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2402.10398","pdf_url":"http://arxiv.org/pdf/2402.10398","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2402.10398","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5022720707","display_name":"Haiyang Liu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Haiyang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5115591003","display_name":"Yang Zhang","orcid":"https://orcid.org/0000-0001-7490-8343"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Yang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076386063","display_name":"Vidya Saikrishna","orcid":"https://orcid.org/0000-0002-1010-0473"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Saikrishna, Vidya","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5111078788","display_name":"Quanquan Tian","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tian, Quanquan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5101599634","display_name":"Kun Zheng","orcid":"https://orcid.org/0000-0002-8966-1184"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zheng, Kun","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12418","display_name":"Respiratory and Cough-Related Research","score":0.9417,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T12418","display_name":"Respiratory and Cough-Related Research","score":0.9417,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11644","display_name":"Spam and Phishing Detection","score":0.9147,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/code","display_name":"Code (set theory)","score":0.6056772}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.62705463},{"id":"https://openalex.org/C2776760102","wikidata":"https://www.wikidata.org/wiki/Q5139990","display_name":"Code (set theory)","level":3,"score":0.6056772},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.49785995},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.36827725},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.32750845},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.19730908},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2402.10398","pdf_url":"http://arxiv.org/pdf/2402.10398","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2402.10398","pdf_url":"http://arxiv.org/pdf/2402.10398","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4386462264","https://openalex.org/W4364306694","https://openalex.org/W4312192474","https://openalex.org/W4306674287","https://openalex.org/W4283697347","https://openalex.org/W3170094116","https://openalex.org/W3107602296","https://openalex.org/W3046775127","https://openalex.org/W2961085424","https://openalex.org/W2033914206"],"abstract_inverted_index":{"Code":[0],"smells":[1],"indicate":[2],"the":[3,40,87,119,127,137,140,144,150,158,164],"potential":[4,41],"problems":[5],"of":[6,42,89,122,130,166,182],"software":[7],"quality":[8],"so":[9],"that":[10,177],"developers":[11],"can":[12],"identify":[13],"refactoring":[14],"opportunities":[15],"by":[16,70,103,135,154,168],"detecting":[17,61],"code":[18,31,63,66,76,95],"smells.":[19,32],"State-of-the-art":[20],"approaches":[21,35],"leverage":[22,98],"heuristics,":[23],"machine":[24],"learning,":[25],"and":[26,82,126,186],"deep":[27],"learning":[28,59],"to":[29,92,118,149,191],"detect":[30,93],"However,":[33],"existing":[34,192],"have":[36],"not":[37],"fully":[38],"explored":[39],"large":[43],"language":[44,80,124],"models":[45],"(LLMs).":[46],"In":[47],"this":[48],"paper,":[49],"we":[50,97],"propose":[51],"\\textit{PromptSmell},":[52],"a":[53,99,105,109,155],"novel":[54],"approach":[55,102],"based":[56],"on":[57],"prompt":[58],"for":[60],"multi-label":[62,94,106],"smell.":[64],"Firstly,":[65],"snippets":[67,77],"are":[68,147],"acquired":[69],"traversing":[71],"abstract":[72],"syntax":[73],"trees.":[74],"Combined":[75],"with":[78],"natural":[79],"prompts":[81],"mask":[83,141],"tokens,":[84],"\\textit{PromptSmell}":[85,167,178],"constructs":[86],"input":[88],"LLMs.":[90],"Secondly,":[91],"smell,":[96],"label":[100],"combination":[101],"converting":[104],"problem":[107],"into":[108],"multi-classification":[110],"problem.":[111],"A":[112],"customized":[113],"answer":[114],"space":[115],"is":[116,133],"added":[117],"word":[120],"list":[121],"pre-trained":[123],"models,":[125],"probability":[128],"distribution":[129],"intermediate":[131,145],"answers":[132,146],"obtained":[134],"predicting":[136],"words":[138],"at":[139],"positions.":[142],"Finally,":[143],"mapped":[148],"target":[151],"class":[152],"labels":[153],"verbalizer":[156],"as":[157],"final":[159],"classification":[160],"result.":[161],"We":[162],"evaluate":[163],"effectiveness":[165],"answering":[169],"six":[170],"research":[171],"questions.":[172],"The":[173],"experimental":[174],"results":[175],"demonstrate":[176],"obtains":[179],"an":[180],"improvement":[181],"11.17\\%":[183],"in":[184,188],"$precision_{w}$":[185],"7.4\\%":[187],"$F1_{w}$":[189],"compared":[190],"approaches.":[193]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4391940817","counts_by_year":[],"updated_date":"2025-04-18T23:07:07.243038","created_date":"2024-02-20"}