{"id":"https://openalex.org/W4391940739","doi":"https://doi.org/10.48550/arxiv.2402.10387","title":"MFBind: a Multi-Fidelity Approach for Evaluating Drug Compounds in\n Practical Generative Modeling","display_name":"MFBind: a Multi-Fidelity Approach for Evaluating Drug Compounds in\n Practical Generative Modeling","publication_year":2024,"publication_date":"2024-02-15","ids":{"openalex":"https://openalex.org/W4391940739","doi":"https://doi.org/10.48550/arxiv.2402.10387"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2402.10387","pdf_url":"https://arxiv.org/pdf/2402.10387","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2402.10387","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101771743","display_name":"Peter Eckmann","orcid":"https://orcid.org/0000-0002-5388-9451"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Eckmann, Peter","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100943740","display_name":"Dongxia Wu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wu, Dongxia","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5026255015","display_name":"Germano Heinzelmann","orcid":"https://orcid.org/0000-0001-7168-6941"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Heinzelmann, Germano","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5049982297","display_name":"Michael K. Gilson","orcid":"https://orcid.org/0000-0002-3375-1738"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gilson, Michael K","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5057778679","display_name":"Rose Yu","orcid":"https://orcid.org/0000-0002-8491-7937"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yu, Rose","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.929131,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":88,"max":92},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":0.3946,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10211","display_name":"Computational Drug Discovery Methods","score":0.3946,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10621","display_name":"Gene Regulatory Network Analysis","score":0.3757,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.66516423},{"id":"https://openalex.org/C2776459999","wikidata":"https://www.wikidata.org/wiki/Q2119376","display_name":"Fidelity","level":2,"score":0.63939047},{"id":"https://openalex.org/C2780035454","wikidata":"https://www.wikidata.org/wiki/Q8386","display_name":"Drug","level":2,"score":0.55977374},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.54906666},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.2951643},{"id":"https://openalex.org/C98274493","wikidata":"https://www.wikidata.org/wiki/Q128406","display_name":"Pharmacology","level":1,"score":0.19845074},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.1857253},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2402.10387","pdf_url":"https://arxiv.org/pdf/2402.10387","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2402.10387","pdf_url":"https://arxiv.org/pdf/2402.10387","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4380449851","https://openalex.org/W4318832338","https://openalex.org/W3125091513","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2381850946","https://openalex.org/W2380075625","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Current":[0],"generative":[1,65,148],"models":[2,19,149],"for":[3,42],"drug":[4],"discovery":[5],"primarily":[6],"use":[7,62],"molecular":[8,48],"docking":[9,31,87],"to":[10,61,75,93,115],"evaluate":[11],"the":[12,77,145],"quality":[13,153],"of":[14,120,147],"generated":[15],"compounds.":[16,154],"However,":[17],"such":[18,46],"are":[20,57],"often":[21],"not":[22,34],"useful":[23],"in":[24,63,139],"practice":[25],"because":[26],"even":[27],"compounds":[28],"with":[29,100,150],"high":[30],"scores":[32],"do":[33],"consistently":[35],"show":[36,128],"experimental":[37],"activity.":[38],"More":[39],"accurate":[40],"methods":[41],"activity":[43],"prediction":[44,113],"exist,":[45],"as":[47],"dynamics":[49],"based":[50],"binding":[51,89],"free":[52,90],"energy":[53,91],"calculations,":[54],"but":[55],"they":[56],"too":[58],"computationally":[59],"expensive":[60],"a":[64,69,95,108],"model.":[66],"We":[67,123],"propose":[68],"multi-fidelity":[70,96,137],"approach,":[71],"Multi-Fidelity":[72],"Bind":[73],"(MFBind),":[74],"achieve":[76],"optimal":[78],"trade-off":[79],"between":[80],"accuracy":[81],"and":[82,88,111,127,136,142],"computational":[83],"cost.":[84],"MFBind":[85,130],"integrates":[86],"simulators":[92],"train":[94],"deep":[97,104],"surrogate":[98,105,140],"model":[99,106],"active":[101],"learning.":[102],"Our":[103],"utilizes":[107],"pretraining":[109],"technique":[110],"linear":[112],"heads":[114],"efficiently":[116],"fit":[117],"small":[118],"amounts":[119],"high-fidelity":[121],"data.":[122],"perform":[124],"extensive":[125],"experiments":[126],"that":[129],"(1)":[131],"outperforms":[132],"other":[133],"state-of-the-art":[134],"single":[135],"baselines":[138],"modeling,":[141],"(2)":[143],"boosts":[144],"performance":[146],"markedly":[151],"higher":[152]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4391940739","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2025-04-23T22:15:24.662088","created_date":"2024-02-20"}