{"id":"https://openalex.org/W4391799143","doi":"https://doi.org/10.48550/arxiv.2402.07529","title":"Accelerating Distributed Deep Learning using Lossless Homomorphic\n Compression","display_name":"Accelerating Distributed Deep Learning using Lossless Homomorphic\n Compression","publication_year":2024,"publication_date":"2024-02-12","ids":{"openalex":"https://openalex.org/W4391799143","doi":"https://doi.org/10.48550/arxiv.2402.07529"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2402.07529","pdf_url":"https://arxiv.org/pdf/2402.07529","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2402.07529","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103028333","display_name":"Haoyu Li","orcid":"https://orcid.org/0009-0004-5822-4629"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Haoyu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5108091653","display_name":"Yuchen Xu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Yuchen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100609081","display_name":"Jiayi Chen","orcid":"https://orcid.org/0000-0002-5817-8317"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Jiayi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5062717710","display_name":"Rohit Dwivedula","orcid":"https://orcid.org/0000-0002-2132-5707"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Dwivedula, Rohit","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5031365162","display_name":"Wenfei Wu","orcid":"https://orcid.org/0000-0002-1357-3137"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wu, Wenfei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102135369","display_name":"Keqiang He","orcid":"https://orcid.org/0009-0002-7447-5933"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"He, Keqiang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5035329776","display_name":"Aditya Akella","orcid":"https://orcid.org/0000-0002-5920-170X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Akella, Aditya","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5022893621","display_name":"Daehyeok Kim","orcid":"https://orcid.org/0000-0002-7439-1783"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kim, Daehyeok","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10715","display_name":"Distributed and Parallel Computing Systems","score":0.8369,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10715","display_name":"Distributed and Parallel Computing Systems","score":0.8369,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10901","display_name":"Advanced Data Compression Techniques","score":0.7668,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10054","display_name":"Parallel Computing and Optimization Techniques","score":0.746,"subfield":{"id":"https://openalex.org/subfields/1708","display_name":"Hardware and Architecture"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/homomorphic-encryption","display_name":"Homomorphic Encryption","score":0.87458}],"concepts":[{"id":"https://openalex.org/C158338273","wikidata":"https://www.wikidata.org/wiki/Q2154943","display_name":"Homomorphic encryption","level":3,"score":0.87458},{"id":"https://openalex.org/C81081738","wikidata":"https://www.wikidata.org/wiki/Q55542","display_name":"Lossless compression","level":3,"score":0.8158269},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6474511},{"id":"https://openalex.org/C180016635","wikidata":"https://www.wikidata.org/wiki/Q2712821","display_name":"Compression (physics)","level":2,"score":0.48077196},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.43220007},{"id":"https://openalex.org/C78548338","wikidata":"https://www.wikidata.org/wiki/Q2493","display_name":"Data compression","level":2,"score":0.2873171},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.1709441},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.15559849},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.07459992},{"id":"https://openalex.org/C148730421","wikidata":"https://www.wikidata.org/wiki/Q141090","display_name":"Encryption","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2402.07529","pdf_url":"https://arxiv.org/pdf/2402.07529","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2402.07529","pdf_url":"https://arxiv.org/pdf/2402.07529","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4390664647","https://openalex.org/W4313300189","https://openalex.org/W4256358502","https://openalex.org/W3106969033","https://openalex.org/W3012147850","https://openalex.org/W2949835517","https://openalex.org/W2748952813","https://openalex.org/W2601739120","https://openalex.org/W2539930818","https://openalex.org/W2186939576"],"abstract_inverted_index":{"As":[0],"deep":[1],"neural":[2],"networks":[3],"(DNNs)":[4],"grow":[5],"in":[6,13,107,134,141],"complexity":[7],"and":[8,42,59,65,97,109,126,137],"size,":[9],"the":[10,25,54],"resultant":[11],"increase":[12,140],"communication":[14],"overhead":[15],"during":[16],"distributed":[17,28],"training":[18,29,103,143],"has":[19],"become":[20],"a":[21,72,131,138],"significant":[22],"bottleneck,":[23],"challenging":[24],"scalability":[26],"of":[27],"systems.":[30],"Existing":[31],"solutions,":[32],"while":[33],"aiming":[34],"to":[35,48,51,130],"mitigate":[36],"this":[37,68],"bottleneck":[38],"through":[39],"worker-level":[40,79],"compression":[41,57,74,80,108],"in-network":[43,82,92],"aggregation,":[44],"fall":[45],"short":[46],"due":[47],"their":[49],"inability":[50],"efficiently":[52],"reconcile":[53],"trade-offs":[55],"between":[56],"effectiveness":[58],"computational":[60,110],"overhead,":[61],"hindering":[62],"overall":[63],"performance":[64],"scalability.":[66],"In":[67],"paper,":[69],"we":[70],"introduce":[71],"novel":[73],"algorithm":[75],"that":[76],"effectively":[77],"merges":[78],"with":[81],"aggregation.":[83],"Our":[84],"solution":[85],"is":[86,114],"both":[87],"homomorphic,":[88],"allowing":[89],"for":[90],"efficient":[91],"aggregation":[93,135],"without":[94],"CPU/GPU":[95],"processing,":[96],"lossless,":[98],"ensuring":[99],"no":[100],"compromise":[101],"on":[102],"accuracy.":[104],"Theoretically":[105],"optimal":[106],"efficiency,":[111],"our":[112],"approach":[113],"empirically":[115],"validated":[116],"across":[117],"diverse":[118],"DNN":[119],"models":[120],"such":[121],"as":[122],"NCF,":[123],"LSTM,":[124],"VGG19,":[125],"BERT-base,":[127],"showing":[128],"up":[129],"6.33$\\times$":[132],"improvement":[133],"throughput":[136],"3.74$\\times$":[139],"per-iteration":[142],"speed.":[144]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4391799143","counts_by_year":[],"updated_date":"2025-01-21T03:36:30.381693","created_date":"2024-02-14"}