{"id":"https://openalex.org/W4391800840","doi":"https://doi.org/10.48550/arxiv.2402.07216","title":"A novel spatial-frequency domain network for zero-shot incremental\n learning","display_name":"A novel spatial-frequency domain network for zero-shot incremental\n learning","publication_year":2024,"publication_date":"2024-02-11","ids":{"openalex":"https://openalex.org/W4391800840","doi":"https://doi.org/10.48550/arxiv.2402.07216"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2402.07216","pdf_url":"http://arxiv.org/pdf/2402.07216","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2402.07216","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5051387840","display_name":"Jie Ren","orcid":"https://orcid.org/0000-0001-5216-7652"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ren, Jie","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100362730","display_name":"Yang Zhao","orcid":"https://orcid.org/0000-0001-8486-1518"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhao, Yang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5013741704","display_name":"Weichuan Zhang","orcid":"https://orcid.org/0000-0003-4904-1826"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Weichuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5041589060","display_name":"Changming Sun","orcid":"https://orcid.org/0000-0001-5943-1989"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sun, Changming","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11609","display_name":"Geophysical Methods and Applications","score":0.9656,"subfield":{"id":"https://openalex.org/subfields/2212","display_name":"Ocean Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11609","display_name":"Geophysical Methods and Applications","score":0.9656,"subfield":{"id":"https://openalex.org/subfields/2212","display_name":"Ocean Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9354,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9252,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/zero","display_name":"Zero (linguistics)","score":0.53699064}],"concepts":[{"id":"https://openalex.org/C2778344882","wikidata":"https://www.wikidata.org/wiki/Q278938","display_name":"Shot (pellet)","level":2,"score":0.57734436},{"id":"https://openalex.org/C2780813799","wikidata":"https://www.wikidata.org/wiki/Q3274237","display_name":"Zero (linguistics)","level":2,"score":0.53699064},{"id":"https://openalex.org/C19118579","wikidata":"https://www.wikidata.org/wiki/Q786423","display_name":"Frequency domain","level":2,"score":0.53541845},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.4517554},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.45156175},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.36738157},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.21609941},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.15346056},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.12648305},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.08421537},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.06462529},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C191897082","wikidata":"https://www.wikidata.org/wiki/Q11467","display_name":"Metallurgy","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2402.07216","pdf_url":"http://arxiv.org/pdf/2402.07216","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2402.07216","pdf_url":"http://arxiv.org/pdf/2402.07216","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4298312966","https://openalex.org/W4214877189","https://openalex.org/W2980279061","https://openalex.org/W2773965352","https://openalex.org/W2728912566","https://openalex.org/W2381179799","https://openalex.org/W2366718574","https://openalex.org/W2359774528","https://openalex.org/W2334685461","https://openalex.org/W2074502265"],"abstract_inverted_index":{"Zero-shot":[0],"incremental":[1,180],"learning":[2,181],"aims":[3],"to":[4,8,10,30,73,121,144],"enable":[5],"the":[6,19,75,114,123,134,142,154,167],"model":[7],"generalize":[9],"new":[11,25],"classes":[12,27],"without":[13],"forgetting":[14],"previously":[15],"learned":[16],"classes.":[17],"However,":[18],"semantic":[20],"gap":[21],"between":[22,129],"old":[23],"and":[24,67,159,170],"sample":[26,42],"can":[28],"lead":[29],"catastrophic":[31,162],"forgetting.":[32,163],"Additionally,":[33],"existing":[34],"algorithms":[35],"lack":[36],"capturing":[37],"significant":[38],"information":[39],"from":[40,150],"each":[41],"image":[43,157],"domain,":[44],"impairing":[45],"models'":[46],"classification":[47],"performance.":[48],"Therefore,":[49],"this":[50],"paper":[51],"proposes":[52],"a":[53,61,89,100],"novel":[54,101],"Spatial-Frequency":[55,62],"Domain":[56],"Network":[57],"(SFDNet)":[58],"which":[59,87],"contains":[60,88],"Feature":[63,69],"Extraction":[64],"(SFFE)":[65],"module":[66,72,84,104],"Attention":[68],"Alignment":[70],"(AFA)":[71],"improve":[74,153],"Zero-Shot":[76,135],"Translation":[77,136],"for":[78,93,107],"Class":[79,116],"Incremental":[80],"algorithm.":[81],"Firstly,":[82],"SFFE":[83],"is":[85,105,119,131],"designed":[86],"dual":[90],"attention":[91],"mechanism":[92],"obtaining":[94,108],"salient":[95],"spatial-frequency":[96,110,147],"feature":[97,102,148],"information.":[98],"Secondly,":[99],"fusion":[103],"conducted":[106],"fused":[109],"domain":[111],"features.":[112],"Thirdly,":[113],"Nearest":[115],"Mean":[117],"classifier":[118],"utilized":[120],"select":[122],"most":[124],"suitable":[125],"category.":[126],"Finally,":[127],"iteration":[128],"tasks":[130],"performed":[132],"using":[133],"model.":[137],"The":[138],"proposed":[139,176],"SFDNet":[140],"has":[141],"ability":[143],"effectively":[145],"extract":[146],"representation":[149],"input":[151],"images,":[152],"accuracy":[155],"of":[156],"classification,":[158],"fundamentally":[160],"alleviate":[161],"Extensive":[164],"experiments":[165],"on":[166],"CUB":[168],"200-2011":[169],"CIFAR100":[171],"datasets":[172],"demonstrate":[173],"that":[174],"our":[175],"algorithm":[177],"outperforms":[178],"state-of-the-art":[179],"algorithms.":[182]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4391800840","counts_by_year":[],"updated_date":"2025-04-15T23:44:05.163372","created_date":"2024-02-14"}