{"id":"https://openalex.org/W4391377088","doi":"https://doi.org/10.48550/arxiv.2401.16375","title":"Spot the Error: Non-autoregressive Graphic Layout Generation with\n Wireframe Locator","display_name":"Spot the Error: Non-autoregressive Graphic Layout Generation with\n Wireframe Locator","publication_year":2024,"publication_date":"2024-01-29","ids":{"openalex":"https://openalex.org/W4391377088","doi":"https://doi.org/10.48550/arxiv.2401.16375"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.16375","pdf_url":"https://arxiv.org/pdf/2401.16375","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2401.16375","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103229081","display_name":"Jieru Lin","orcid":"https://orcid.org/0000-0003-1178-6435"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lin, Jieru","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061321029","display_name":"Danqing Huang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Huang, Danqing","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100845972","display_name":"Tiejun Zhao","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhao, Tiejun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5113748483","display_name":"Dechen Zhan","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhan, Dechen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5090151187","display_name":"Chin-Yew Lin","orcid":"https://orcid.org/0000-0002-0798-6365"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lin, Chin-Yew","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10481","display_name":"Computer Graphics and Visualization Techniques","score":0.9871,"subfield":{"id":"https://openalex.org/subfields/1704","display_name":"Computer Graphics and Computer-Aided Design"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10481","display_name":"Computer Graphics and Visualization Techniques","score":0.9871,"subfield":{"id":"https://openalex.org/subfields/1704","display_name":"Computer Graphics and Computer-Aided Design"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10888","display_name":"Augmented Reality Applications","score":0.9815,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11211","display_name":"3D Surveying and Cultural Heritage","score":0.9769,"subfield":{"id":"https://openalex.org/subfields/1907","display_name":"Geology"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C159877910","wikidata":"https://www.wikidata.org/wiki/Q2202883","display_name":"Autoregressive model","level":2,"score":0.841174},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6530532},{"id":"https://openalex.org/C121684516","wikidata":"https://www.wikidata.org/wiki/Q7600677","display_name":"Computer graphics (images)","level":1,"score":0.59159905},{"id":"https://openalex.org/C194657046","wikidata":"https://www.wikidata.org/wiki/Q7394685","display_name":"STAR model","level":4,"score":0.47271058},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.359857},{"id":"https://openalex.org/C24338571","wikidata":"https://www.wikidata.org/wiki/Q2566298","display_name":"Autoregressive integrated moving average","level":3,"score":0.21698216},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.21591386},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.20751882},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.102407634},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.06999946}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.16375","pdf_url":"https://arxiv.org/pdf/2401.16375","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.16375","pdf_url":"https://arxiv.org/pdf/2401.16375","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3120578569","https://openalex.org/W2439807930","https://openalex.org/W2168175994","https://openalex.org/W2120434453","https://openalex.org/W2024529895","https://openalex.org/W2019155478","https://openalex.org/W2009692134","https://openalex.org/W1972271943","https://openalex.org/W1902630399","https://openalex.org/W1487412319"],"abstract_inverted_index":{"Layout":[0],"generation":[1,23],"is":[2,45,103,131],"a":[3,21,77,146,172],"critical":[4],"step":[5],"in":[6,48,134,179],"graphic":[7,139],"design":[8],"to":[9,62,84,96,112,149,175,185],"achieve":[10],"meaningful":[11],"compositions":[12],"of":[13,138,210],"elements.":[14],"Most":[15],"previous":[16],"works":[17,91],"view":[18],"it":[19,58,169],"as":[20,164,171],"sequence":[22,163,178],"problem":[24],"by":[25],"concatenating":[26],"element":[27,177],"attribute":[28],"tokens":[29,99,152],"(i.e.,":[30],"category,":[31],"size,":[32],"position).":[33],"So":[34],"far":[35],"the":[36,63,82,115,118,155,160,176,186,208],"autoregressive":[37],"approach":[38,197],"(AR)":[39],"has":[40],"achieved":[41],"promising":[42],"results,":[43,74],"but":[44],"still":[46],"limited":[47],"global":[49],"context":[50,79],"modeling":[51],"and":[52,81,120,182,201],"suffers":[53],"from":[54,159],"error":[55],"propagation":[56],"since":[57],"can":[59],"only":[60,92],"attend":[61],"previously":[64],"generated":[65,161],"tokens.":[66],"Recent":[67],"non-autoregressive":[68],"attempts":[69],"(NAR)":[70],"have":[71],"shown":[72],"competitive":[73],"which":[75,102,153],"provides":[76],"wider":[78],"range":[80],"flexibility":[83],"refine":[85],"with":[86,213],"iterative":[87],"decoding.":[88],"However,":[89],"current":[90],"use":[93],"simple":[94],"heuristics":[95],"recognize":[97],"erroneous":[98,151],"for":[100],"refinement":[101],"inaccurate.":[104],"This":[105],"paper":[106],"first":[107],"conducts":[108],"an":[109],"in-depth":[110],"analysis":[111],"better":[113],"understand":[114],"difference":[116],"between":[117],"AR":[119,200],"NAR":[121,202],"framework.":[122],"Furthermore,":[123],"based":[124],"on":[125,190],"our":[126,196],"observation":[127],"that":[128,168,195],"pixel":[129],"space":[130,181],"more":[132],"sensitive":[133],"capturing":[135],"spatial":[136],"patterns":[137],"layouts":[140],"(e.g.,":[141],"overlap,":[142],"alignment),":[143],"we":[144],"propose":[145],"learning-based":[147],"locator":[148],"detect":[150],"takes":[154],"wireframe":[156],"image":[157],"rendered":[158],"layout":[162],"input.":[165],"We":[166],"show":[167,194],"serves":[170],"complementary":[173],"modality":[174],"object":[180],"contributes":[183],"greatly":[184],"overall":[187],"performance.":[188],"Experiments":[189],"two":[191],"public":[192],"datasets":[193],"outperforms":[198],"both":[199],"baselines.":[203],"Extensive":[204],"studies":[205],"further":[206],"prove":[207],"effectiveness":[209],"different":[211],"modules":[212],"interesting":[214],"findings.":[215],"Our":[216],"code":[217],"will":[218],"be":[219],"available":[220],"at":[221],"https://github.com/ffffatgoose/SpotError.":[222]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4391377088","counts_by_year":[],"updated_date":"2025-01-21T03:39:59.298666","created_date":"2024-01-31"}