{"id":"https://openalex.org/W4391376476","doi":"https://doi.org/10.48550/arxiv.2401.15854","title":"LSTM-based Deep Neural Network With A Focus on Sentence Representation\n for Sequential Sentence Classification in Medical Scientific Abstracts","display_name":"LSTM-based Deep Neural Network With A Focus on Sentence Representation\n for Sequential Sentence Classification in Medical Scientific Abstracts","publication_year":2024,"publication_date":"2024-01-28","ids":{"openalex":"https://openalex.org/W4391376476","doi":"https://doi.org/10.48550/arxiv.2401.15854"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.15854","pdf_url":"https://arxiv.org/pdf/2401.15854","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2401.15854","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5056967532","display_name":"P. C. B. Lam","orcid":"https://orcid.org/0009-0003-5105-5976"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lam, Phat","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075250567","display_name":"Lam Pham","orcid":"https://orcid.org/0000-0001-8155-7553"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pham, Lam","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100705490","display_name":"Tin Nguyen","orcid":"https://orcid.org/0009-0008-5041-3627"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Nguyen, Tin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5082199118","display_name":"Hieu Tang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tang, Hieu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5108897642","display_name":"S. Beauchamp Michael","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Michael, Seidl","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5102746568","display_name":"Alexander Schindler","orcid":"https://orcid.org/0000-0001-6058-7753"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Schindler, Alexander","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.7873,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.7873,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.6874,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.61135316}],"concepts":[{"id":"https://openalex.org/C2777530160","wikidata":"https://www.wikidata.org/wiki/Q41796","display_name":"Sentence","level":2,"score":0.8861289},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.6798041},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.65371025},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.61135316},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.61088085},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.60883254},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5027144},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.39632165},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.104120344},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.056373745},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.04126817},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.03862247},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.15854","pdf_url":"https://arxiv.org/pdf/2401.15854","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.15854","pdf_url":"https://arxiv.org/pdf/2401.15854","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W2982905616","https://openalex.org/W2785900585","https://openalex.org/W2392760275","https://openalex.org/W2392060890","https://openalex.org/W2385471969","https://openalex.org/W2375873920","https://openalex.org/W2360644719","https://openalex.org/W2146114872","https://openalex.org/W2083530853","https://openalex.org/W2012531322"],"abstract_inverted_index":{"The":[0],"Sequential":[1],"Sentence":[2],"Classification":[3],"task":[4],"within":[5,72],"the":[6,15,31,34,48,58,64,67,73,94,113,118,128,138,146,158,164,168,181,190,198],"domain":[7],"of":[8,17,50,70,120,160,189],"medical":[9],"abstracts,":[10],"termed":[11],"as":[12],"SSC,":[13],"involves":[14],"categorization":[16],"sentences":[18,37,71],"into":[19],"pre-defined":[20],"headings":[21],"based":[22],"on":[23,197],"their":[24],"roles":[25],"in":[26,30,63,163],"conveying":[27],"critical":[28],"information":[29,60],"abstract.":[32],"In":[33,83],"SSC":[35,95],"task,":[36],"are":[38,141],"often":[39],"sequentially":[40],"related":[41],"to":[42,75,107,156,167,180],"each":[43],"other.":[44],"For":[45],"this":[46,84],"reason,":[47],"role":[49],"sentence":[51,65,110,114],"embedding":[52],"is":[53,153,177],"crucial":[54],"for":[55,80,93],"capturing":[56],"both":[57],"semantic":[59],"between":[61],"words":[62],"and":[66,131,184,195,207],"contextual":[68],"relationship":[69],"abstract":[74,129],"provide":[76],"a":[77,88,100,122,132],"comprehensive":[78],"representation":[79],"better":[81],"classification.":[82],"paper,":[85],"we":[86,98],"present":[87],"hierarchical":[89],"deep":[90],"learning":[91],"model":[92,147,169],"task.":[96],"First,":[97],"propose":[99],"LSTM-based":[101],"network":[102,125,135,166],"with":[103],"multiple":[104],"feature":[105],"branches":[106],"create":[108],"well-presented":[109],"embeddings":[111],"at":[112,127,137,171],"level.":[115],"To":[116],"perform":[117],"sequence":[119],"sentences,":[121],"convolutional-recurrent":[123],"neural":[124],"(C-RNN)":[126],"level":[130,140],"multi-layer":[133],"perception":[134],"(MLP)":[136],"segment":[139],"developed":[142],"that":[143],"further":[144,185],"enhance":[145],"performance.":[148],"Additionally,":[149],"an":[150],"ablation":[151],"study":[152],"also":[154],"conducted":[155],"evaluate":[157],"contribution":[159],"individual":[161],"component":[162],"entire":[165],"performance":[170],"different":[172],"levels.":[173],"Our":[174],"proposed":[175],"system":[176],"very":[178],"competitive":[179],"state-of-the-art":[182],"systems":[183],"improve":[186],"F1":[187],"scores":[188],"baseline":[191],"by":[192],"1.0%,":[193],"2.8%,":[194],"2.6%":[196],"benchmark":[199],"datasets":[200],"PudMed":[201,204],"200K":[202],"RCT,":[203],"20K":[205],"RCT":[206],"NICTA-PIBOSO,":[208],"respectively.":[209]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4391376476","counts_by_year":[],"updated_date":"2025-01-21T03:39:59.973553","created_date":"2024-01-31"}