{"id":"https://openalex.org/W4391272813","doi":"https://doi.org/10.48550/arxiv.2401.14226","title":"Sample Efficient Reinforcement Learning by Automatically Learning to Compose Subtasks","display_name":"Sample Efficient Reinforcement Learning by Automatically Learning to Compose Subtasks","publication_year":2024,"publication_date":"2024-01-01","ids":{"openalex":"https://openalex.org/W4391272813","doi":"https://doi.org/10.48550/arxiv.2401.14226"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.14226","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2401.14226","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5037243756","display_name":"Shuai D. Han","orcid":"https://orcid.org/0000-0001-7741-2378"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Han, Shuai","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028760842","display_name":"Mehdi Dastani","orcid":"https://orcid.org/0000-0002-4641-4087"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Dastani, Mehdi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5107808323","display_name":"Shihan Wang","orcid":"https://orcid.org/0000-0001-5971-7522"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Shihan","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":81},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10462","display_name":"Reinforcement Learning in Robotics","score":0.9893,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10462","display_name":"Reinforcement Learning in Robotics","score":0.9893,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9696,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9589,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/sample","display_name":"Sample (material)","score":0.68469054}],"concepts":[{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.9178931},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8082626},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.7299469},{"id":"https://openalex.org/C198531522","wikidata":"https://www.wikidata.org/wiki/Q485146","display_name":"Sample (material)","level":2,"score":0.68469054},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.6490722},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.64477634},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.571246},{"id":"https://openalex.org/C136197465","wikidata":"https://www.wikidata.org/wiki/Q1729295","display_name":"Variety (cybernetics)","level":2,"score":0.56177837},{"id":"https://openalex.org/C14036430","wikidata":"https://www.wikidata.org/wiki/Q3736076","display_name":"Function (biology)","level":2,"score":0.5573117},{"id":"https://openalex.org/C48103436","wikidata":"https://www.wikidata.org/wiki/Q599031","display_name":"State (computer science)","level":2,"score":0.48652524},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.16309795},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C78458016","wikidata":"https://www.wikidata.org/wiki/Q840400","display_name":"Evolutionary biology","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.14226","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2401.14226","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.14226","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W54497855","https://openalex.org/W4306904969","https://openalex.org/W3125814499","https://openalex.org/W3121970507","https://openalex.org/W217960748","https://openalex.org/W2110028391","https://openalex.org/W2094012830","https://openalex.org/W2090827041","https://openalex.org/W2032233321","https://openalex.org/W187246281"],"abstract_inverted_index":{"Improving":[0],"sample":[1,99],"efficiency":[2],"is":[3],"central":[4],"to":[5,22,41,79,136],"Reinforcement":[6],"Learning":[7],"(RL),":[8],"especially":[9],"in":[10,35,75,125,144],"environments":[11],"where":[12],"the":[13,36,44,95,114,159,163,166],"rewards":[14],"are":[15,39,60],"sparse.":[16],"Some":[17],"recent":[18],"approaches":[19],"have":[20],"proposed":[21],"specify":[23],"reward":[24,31,49,73,96],"functions":[25],"as":[26,162],"manually":[27],"designed":[28,48],"or":[29,71],"learned":[30],"structures":[32,50,74],"whose":[33],"integrations":[34],"RL":[37,76,89],"algorithms":[38,77],"claimed":[40],"significantly":[42,157],"improve":[43],"learning":[45,58],"efficiency.":[46],"Manually":[47],"can":[51,92],"suffer":[52],"from":[53],"inaccuracy":[54],"and":[55],"existing":[56],"automatically":[57,93],"methods":[59],"often":[61],"computationally":[62],"intractable":[63],"for":[64,98],"complex":[65],"tasks.":[66],"The":[67,150],"integration":[68],"of":[69,104,147,165],"inaccurate":[70],"partial":[72],"fail":[78],"learn":[80],"optimal":[81,123],"policies.":[82],"In":[83],"this":[84],"work,":[85],"we":[86,116],"propose":[87],"an":[88],"algorithm":[90,143],"that":[91,106,121,133,154],"structure":[94],"function":[97],"efficiency,":[100],"given":[101],"a":[102,118,130,145],"set":[103],"labels":[105],"signify":[107],"subtasks.":[108],"Given":[109],"such":[110],"minimal":[111],"knowledge":[112],"about":[113],"task,":[115],"train":[117],"high-level":[119],"policy":[120,132],"selects":[122],"sub-tasks":[124],"each":[126,138],"state":[127],"together":[128],"with":[129],"low-level":[131],"efficiently":[134],"learns":[135],"complete":[137],"sub-task.":[139],"We":[140],"evaluate":[141],"our":[142,155],"variety":[146],"sparse-reward":[148],"environments.":[149],"experiment":[151],"results":[152],"show":[153],"approach":[156],"outperforms":[158],"state-of-art":[160],"baselines":[161],"difficulty":[164],"task":[167],"increases.":[168]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4391272813","counts_by_year":[],"updated_date":"2025-02-13T12:15:08.281975","created_date":"2024-01-27"}