{"id":"https://openalex.org/W4391272583","doi":"https://doi.org/10.48550/arxiv.2401.14081","title":"Accelerating Fractional PINNs using Operational Matrices of Derivative","display_name":"Accelerating Fractional PINNs using Operational Matrices of Derivative","publication_year":2024,"publication_date":"2024-01-01","ids":{"openalex":"https://openalex.org/W4391272583","doi":"https://doi.org/10.48550/arxiv.2401.14081"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.14081","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2401.14081","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5005096354","display_name":"Tayebeh Taheri","orcid":"https://orcid.org/0000-0003-1711-8606"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Taheri, Tayebeh","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5010772437","display_name":"Alireza Afzal Aghaei","orcid":"https://orcid.org/0000-0001-9505-819X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Aghaei, Alireza Afzal","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5090033177","display_name":"Kourosh Parand","orcid":"https://orcid.org/0000-0001-5946-0771"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Parand, Kourosh","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10288","display_name":"Fractional Differential Equations Solutions","score":0.997,"subfield":{"id":"https://openalex.org/subfields/2611","display_name":"Modeling and Simulation"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10288","display_name":"Fractional Differential Equations Solutions","score":0.997,"subfield":{"id":"https://openalex.org/subfields/2611","display_name":"Modeling and Simulation"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11206","display_name":"Model Reduction and Neural Networks","score":0.9766,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11222","display_name":"Magnetic Properties and Applications","score":0.9294,"subfield":{"id":"https://openalex.org/subfields/2504","display_name":"Electronic, Optical and Magnetic Materials"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/matrix","display_name":"Matrix (chemical analysis)","score":0.46781918}],"concepts":[{"id":"https://openalex.org/C154249771","wikidata":"https://www.wikidata.org/wiki/Q1339058","display_name":"Fractional calculus","level":2,"score":0.596578},{"id":"https://openalex.org/C73000952","wikidata":"https://www.wikidata.org/wiki/Q17007827","display_name":"Discretization","level":2,"score":0.53364575},{"id":"https://openalex.org/C111458787","wikidata":"https://www.wikidata.org/wiki/Q215405","display_name":"Legendre polynomials","level":2,"score":0.5112005},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.4990754},{"id":"https://openalex.org/C78045399","wikidata":"https://www.wikidata.org/wiki/Q11214","display_name":"Differential equation","level":2,"score":0.47696364},{"id":"https://openalex.org/C158622935","wikidata":"https://www.wikidata.org/wiki/Q660848","display_name":"Nonlinear system","level":2,"score":0.4714937},{"id":"https://openalex.org/C106487976","wikidata":"https://www.wikidata.org/wiki/Q685816","display_name":"Matrix (chemical analysis)","level":2,"score":0.46781918},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.45911425},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.44669318},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.43627372},{"id":"https://openalex.org/C186219872","wikidata":"https://www.wikidata.org/wiki/Q955889","display_name":"Differential algebraic equation","level":4,"score":0.4295628},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.25340012},{"id":"https://openalex.org/C51544822","wikidata":"https://www.wikidata.org/wiki/Q465274","display_name":"Ordinary differential equation","level":3,"score":0.18254417},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.12030864},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.14081","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2401.14081","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.14081","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W98620387","https://openalex.org/W2985353392","https://openalex.org/W2911223566","https://openalex.org/W2736737644","https://openalex.org/W2364741597","https://openalex.org/W2214763494","https://openalex.org/W2153650232","https://openalex.org/W2006251942","https://openalex.org/W1864774435","https://openalex.org/W1492103595"],"abstract_inverted_index":{"This":[0],"paper":[1],"presents":[2],"a":[3,21,60,101,157],"novel":[4],"operational":[5,46],"matrix":[6,47],"method":[7,111,140],"to":[8,141],"accelerate":[9],"the":[10,25,45,52,80,86,97,136,139],"training":[11,53],"of":[12,24,32,108,125,138,143,160],"fractional":[13,26,33,37],"Physics-Informed":[14],"Neural":[15,88],"Networks":[16],"(fPINNs).":[17],"Our":[18],"approach":[19],"involves":[20],"non-uniform":[22],"discretization":[23],"Caputo":[27],"operator,":[28],"facilitating":[29],"swift":[30],"computation":[31],"derivatives":[34],"within":[35],"Caputo-type":[36],"differential":[38,116,144],"problems":[39],"with":[40,59,68],"$0<\\alpha<1$.":[41],"In":[42],"this":[43],"methodology,":[44],"is":[48,57,66,112],"precomputed,":[49],"and":[50,123],"during":[51],"phase,":[54],"automatic":[55],"differentiation":[56],"replaced":[58],"matrix-vector":[61],"product.":[62],"While":[63],"our":[64,109],"methodology":[65],"compatible":[67],"any":[69],"network,":[70],"we":[71,134],"particularly":[72],"highlight":[73],"its":[74,132],"successful":[75],"implementation":[76],"in":[77,104],"PINNs,":[78],"emphasizing":[79],"enhanced":[81],"accuracy":[82],"achieved":[83],"when":[84],"utilizing":[85],"Legendre":[87,94],"Block":[89],"(LNB)":[90],"architecture.":[91],"LNB":[92],"incorporates":[93],"polynomials":[95],"into":[96],"PINN":[98],"structure,":[99],"providing":[100],"significant":[102],"boost":[103],"accuracy.":[105],"The":[106,152],"effectiveness":[107],"proposed":[110],"validated":[113],"across":[114],"diverse":[115],"equations,":[117,145],"including":[118],"Delay":[119],"Differential":[120,126],"Equations":[121,128],"(DDEs)":[122],"Systems":[124],"Algebraic":[127],"(DAEs).":[129],"To":[130],"demonstrate":[131],"versatility,":[133],"extend":[135],"application":[137],"systems":[142],"specifically":[146],"addressing":[147],"nonlinear":[148],"Pantograph":[149],"fractional-order":[150],"DDEs/DAEs.":[151],"results":[153],"are":[154],"supported":[155],"by":[156],"comprehensive":[158],"analysis":[159],"numerical":[161],"outcomes.":[162]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4391272583","counts_by_year":[],"updated_date":"2024-12-07T05:41:26.541572","created_date":"2024-01-27"}