{"id":"https://openalex.org/W4391244626","doi":"https://doi.org/10.48550/arxiv.2401.13335","title":"Full Bayesian Significance Testing for Neural Networks","display_name":"Full Bayesian Significance Testing for Neural Networks","publication_year":2024,"publication_date":"2024-01-01","ids":{"openalex":"https://openalex.org/W4391244626","doi":"https://doi.org/10.48550/arxiv.2401.13335"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.13335","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2401.13335","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100697562","display_name":"Zehua Liu","orcid":"https://orcid.org/0000-0003-3293-5356"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Zehua","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102004636","display_name":"Zimeng Li","orcid":"https://orcid.org/0000-0003-2798-3134"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Zimeng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100400846","display_name":"Jingyuan Wang","orcid":"https://orcid.org/0000-0003-0651-1592"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Jingyuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5104096148","display_name":"Yue He","orcid":"https://orcid.org/0000-0002-1507-2221"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"He, Yue","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10876","display_name":"Fault Detection and Control Systems","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10876","display_name":"Fault Detection and Control Systems","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":0.9925,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9857,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.64880776},{"id":"https://openalex.org/C204323151","wikidata":"https://www.wikidata.org/wiki/Q905424","display_name":"Range (aeronautics)","level":2,"score":0.49288106},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.49200842},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.48708344},{"id":"https://openalex.org/C87007009","wikidata":"https://www.wikidata.org/wiki/Q210832","display_name":"Statistical hypothesis testing","level":2,"score":0.47683707},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.38167882},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3738926},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.29684532},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.25634938},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.13335","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2401.13335","pdf_url":"http://arxiv.org/pdf/2401.13335","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2401.13335","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.13335","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W2989452537","https://openalex.org/W2544423928","https://openalex.org/W2187401768","https://openalex.org/W2181743346","https://openalex.org/W2181413294","https://openalex.org/W2073681303","https://openalex.org/W2062023542","https://openalex.org/W2053286651","https://openalex.org/W2052122378","https://openalex.org/W2051487156"],"abstract_inverted_index":{"Significance":[0,49],"testing":[1,22,31,108],"aims":[2],"to":[3,25,34,45,56,72,146],"determine":[4],"whether":[5],"a":[6,116],"proposition":[7],"about":[8],"the":[9,13,27,30,58,74,89,125,148],"population":[10],"distribution":[11,28],"is":[12,70,115],"truth":[14],"or":[15],"not":[16,96],"given":[17],"observations.":[18],"However,":[19],"traditional":[20,64],"significance":[21,99],"often":[23],"needs":[24],"derive":[26],"of":[29,63,136,150],"statistic,":[32],"failing":[33],"deal":[35],"with":[36,79],"complex":[37],"nonlinear":[38,75],"relationships.":[39],"In":[40],"this":[41],"paper,":[42],"we":[43],"propose":[44],"conduct":[46],"Full":[47],"Bayesian":[48,67],"Testing":[50],"for":[51],"neural":[52,68],"networks,":[53],"called":[54],"\\textit{n}FBST,":[55],"overcome":[57],"limitation":[59],"in":[60],"relationship":[61],"characterization":[62],"approaches.":[65],"A":[66,134],"network":[69],"utilized":[71],"fit":[73],"and":[76,82,103,141],"multi-dimensional":[77],"relationships":[78],"small":[80],"errors":[81],"avoid":[83],"hard":[84],"theoretical":[85],"derivation":[86],"by":[87],"computing":[88],"evidence":[90],"value.":[91],"Besides,":[92],"\\textit{n}FBST":[93,114],"can":[94,120],"test":[95],"only":[97],"global":[98],"but":[100],"also":[101],"local":[102],"instance-wise":[104],"significance,":[105],"which":[106],"previous":[107],"methods":[109],"don't":[110],"focus":[111],"on.":[112],"Moreover,":[113],"general":[117],"framework":[118],"that":[119],"be":[121],"extended":[122],"based":[123],"on":[124,138],"measures":[126],"selected,":[127],"such":[128],"as":[129],"Grad-\\textit{n}FBST,":[130],"LRP-\\textit{n}FBST,":[131],"DeepLIFT-\\textit{n}FBST,":[132],"LIME-\\textit{n}FBST.":[133],"range":[135],"experiments":[137],"both":[139],"simulated":[140],"real":[142],"data":[143],"are":[144],"conducted":[145],"show":[147],"advantages":[149],"our":[151],"method.":[152]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4391244626","counts_by_year":[],"updated_date":"2025-04-24T03:14:33.026402","created_date":"2024-01-26"}