{"id":"https://openalex.org/W4391158486","doi":"https://doi.org/10.48550/arxiv.2401.11611","title":"Continuous Field Reconstruction from Sparse Observations with Implicit Neural Networks","display_name":"Continuous Field Reconstruction from Sparse Observations with Implicit Neural Networks","publication_year":2024,"publication_date":"2024-01-01","ids":{"openalex":"https://openalex.org/W4391158486","doi":"https://doi.org/10.48550/arxiv.2401.11611"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.11611","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2401.11611","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5071318806","display_name":"Xihaier Luo","orcid":"https://orcid.org/0000-0002-7621-940X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Luo, Xihaier","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5080649483","display_name":"Wei Xu","orcid":"https://orcid.org/0000-0002-6616-3633"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Wei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5013719267","display_name":"Yihui Ren","orcid":"https://orcid.org/0000-0002-5750-6964"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ren, Yihui","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5048176207","display_name":"Shinjae Yoo","orcid":"https://orcid.org/0000-0003-4378-6448"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yoo, Shinjae","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5108744532","display_name":"Balu Nadiga","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Nadiga, Balu","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.900916,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":92,"max":95},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10466","display_name":"Meteorological Phenomena and Simulations","score":0.9952,"subfield":{"id":"https://openalex.org/subfields/1902","display_name":"Atmospheric Science"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10466","display_name":"Meteorological Phenomena and Simulations","score":0.9952,"subfield":{"id":"https://openalex.org/subfields/1902","display_name":"Atmospheric Science"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10255","display_name":"Oceanographic and Atmospheric Processes","score":0.9828,"subfield":{"id":"https://openalex.org/subfields/1910","display_name":"Oceanography"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10029","display_name":"Climate variability and models","score":0.9753,"subfield":{"id":"https://openalex.org/subfields/2306","display_name":"Global and Planetary Change"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.6921616}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7416166},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.6921616},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.65321505},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5983035},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.54024315},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.53874695},{"id":"https://openalex.org/C124066611","wikidata":"https://www.wikidata.org/wiki/Q28684319","display_name":"Sparse approximation","level":2,"score":0.45437688},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.38026643},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.37259617},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.36119443},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3604376},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.10319403},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.11611","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2401.11611","pdf_url":"http://arxiv.org/pdf/2401.11611","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2401.11611","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.11611","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Climate action","id":"https://metadata.un.org/sdg/13","score":0.66}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W2961085424","https://openalex.org/W2795079307","https://openalex.org/W2793058541","https://openalex.org/W2391251536","https://openalex.org/W2387058352","https://openalex.org/W2362198218","https://openalex.org/W2130187411","https://openalex.org/W2062195135","https://openalex.org/W2004814108","https://openalex.org/W1983629434"],"abstract_inverted_index":{"Reliably":[0],"reconstructing":[1],"physical":[2,62],"fields":[3],"from":[4,91,122],"sparse":[5],"sensor":[6],"data":[7,24,95,121],"is":[8,26,34],"a":[9,35,52,57,99,123,128],"challenge":[10],"that":[11,55,131],"frequently":[12],"arises":[13],"in":[14,38],"many":[15],"scientific":[16],"domains.":[17],"In":[18,105],"practice,":[19],"the":[20,23,40,47,61,80,85,103,108],"process":[21],"generating":[22],"often":[25],"not":[27],"understood":[28],"to":[29,45,97],"sufficient":[30],"accuracy.":[31],"Therefore,":[32],"there":[33],"growing":[36],"interest":[37],"using":[39,64,79],"deep":[41],"neural":[42,66],"network":[43],"route":[44],"address":[46],"problem.":[48],"This":[49],"work":[50],"presents":[51],"novel":[53],"approach":[54],"learns":[56,87],"continuous":[58,100],"representation":[59,101],"of":[60,82,102],"field":[63],"implicit":[65],"representations":[67],"(INRs).":[68],"Specifically,":[69],"after":[70],"factorizing":[71],"spatiotemporal":[72],"variability":[73],"into":[74],"spatial":[75],"and":[76,127],"temporal":[77],"components":[78],"separation":[81],"variables":[83],"technique,":[84],"method":[86],"relevant":[88],"basis":[89],"functions":[90],"sparsely":[92],"sampled":[93],"irregular":[94],"points":[96],"develop":[98],"data.":[104],"experimental":[106],"evaluations,":[107],"proposed":[109],"model":[110,126],"outperforms":[111],"recent":[112],"INR":[113],"methods,":[114],"offering":[115],"superior":[116],"reconstruction":[117],"quality":[118],"on":[119],"simulation":[120],"state-of-the-art":[124],"climate":[125],"second":[129],"dataset":[130],"comprises":[132],"ultra-high":[133],"resolution":[134],"satellite-based":[135],"sea":[136],"surface":[137],"temperature":[138],"fields.":[139]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4391158486","counts_by_year":[{"year":2024,"cited_by_count":3}],"updated_date":"2025-04-23T22:24:53.404339","created_date":"2024-01-24"}