{"id":"https://openalex.org/W4391047376","doi":"https://doi.org/10.48550/arxiv.2401.10110","title":"VIPTR: A Vision Permutable Extractor for Fast and Efficient Scene Text Recognition","display_name":"VIPTR: A Vision Permutable Extractor for Fast and Efficient Scene Text Recognition","publication_year":2024,"publication_date":"2024-01-01","ids":{"openalex":"https://openalex.org/W4391047376","doi":"https://doi.org/10.48550/arxiv.2401.10110"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.10110","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2401.10110","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5014289767","display_name":"Xianfu Cheng","orcid":"https://orcid.org/0000-0003-1130-8302"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Cheng, Xianfu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101256953","display_name":"Weixiao Zhou","orcid":"https://orcid.org/0009-0006-8929-0834"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhou, Weixiao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100430478","display_name":"Xiang Li","orcid":"https://orcid.org/0000-0003-1657-209X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Xiang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100373745","display_name":"Xiaohong Chen","orcid":"https://orcid.org/0000-0002-9797-8384"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Xiaoming","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100726984","display_name":"Jian Yang","orcid":"https://orcid.org/0000-0003-4800-832X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Jian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5016178437","display_name":"Tongliang Li","orcid":"https://orcid.org/0000-0002-2488-2787"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Tongliang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5036786337","display_name":"Zhoujun Li","orcid":"https://orcid.org/0000-0002-9603-9713"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Zhoujun","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10601","display_name":"Handwritten Text Recognition Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10601","display_name":"Handwritten Text Recognition Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9814,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10824","display_name":"Image Retrieval and Classification Techniques","score":0.9797,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pyramid","display_name":"Pyramid (geometry)","score":0.56427765},{"id":"https://openalex.org/keywords/code","display_name":"Code (set theory)","score":0.5373494},{"id":"https://openalex.org/keywords/sequence","display_name":"Sequence (biology)","score":0.4576184},{"id":"https://openalex.org/keywords/extractor","display_name":"Extractor","score":0.4104904}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7963636},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.75451934},{"id":"https://openalex.org/C142575187","wikidata":"https://www.wikidata.org/wiki/Q3358290","display_name":"Pyramid (geometry)","level":2,"score":0.56427765},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.55248994},{"id":"https://openalex.org/C2776760102","wikidata":"https://www.wikidata.org/wiki/Q5139990","display_name":"Code (set theory)","level":3,"score":0.5373494},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.5034167},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.4767193},{"id":"https://openalex.org/C2778112365","wikidata":"https://www.wikidata.org/wiki/Q3511065","display_name":"Sequence (biology)","level":2,"score":0.4576184},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.45116264},{"id":"https://openalex.org/C125411270","wikidata":"https://www.wikidata.org/wiki/Q18653","display_name":"Encoding (memory)","level":2,"score":0.42873248},{"id":"https://openalex.org/C117978034","wikidata":"https://www.wikidata.org/wiki/Q5422192","display_name":"Extractor","level":2,"score":0.4104904},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.33294362},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C54355233","wikidata":"https://www.wikidata.org/wiki/Q7162","display_name":"Genetics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0},{"id":"https://openalex.org/C21880701","wikidata":"https://www.wikidata.org/wiki/Q2144042","display_name":"Process engineering","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.10110","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2401.10110","pdf_url":"http://arxiv.org/pdf/2401.10110","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2401.10110","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.10110","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4390516098","https://openalex.org/W4283822356","https://openalex.org/W3082848404","https://openalex.org/W2372254676","https://openalex.org/W2147282173","https://openalex.org/W2129146436","https://openalex.org/W2032507829","https://openalex.org/W2016864125","https://openalex.org/W1979583797","https://openalex.org/W1950940422"],"abstract_inverted_index":{"Scene":[0],"Text":[1,61],"Recognition":[2,62],"(STR)":[3],"is":[4,208],"a":[5,84,88,107,170,182],"challenging":[6],"task":[7],"that":[8],"involves":[9],"recognizing":[10],"text":[11,132,204],"within":[12],"images":[13],"of":[14,41,79,113,116,137],"natural":[15],"scenes.":[16],"Although":[17],"current":[18],"state-of-the-art":[19],"models":[20,153],"for":[21,56,126,185],"STR":[22,187],"exhibit":[23],"high":[24,70,191],"performance,":[25],"they":[26],"typically":[27],"suffer":[28],"from":[29],"low":[30,171],"inference":[31,74,157,176],"efficiency":[32,194],"due":[33],"to":[34],"their":[35],"reliance":[36],"on":[37,122,148],"hybrid":[38],"architectures":[39],"comprised":[40],"visual":[42],"encoders":[43],"and":[44,58,72,109,129,154,174,195,202],"sequence":[45,100],"decoders.":[46],"In":[47],"this":[48],"work,":[49],"we":[50],"propose":[51],"the":[52,77,98,135,140,160,186],"VIsion":[53],"Permutable":[54],"extractor":[55,86],"fast":[57,201],"efficient":[59,110],"scene":[60,131],"(VIPTR),":[63],"which":[64,189],"achieves":[65,155],"an":[66],"impressive":[67],"balance":[68],"between":[69],"performance":[71],"rapid":[73],"speeds":[75],"in":[76,106],"domain":[78],"STR.":[80],"Specifically,":[81],"VIPTR":[82],"leverages":[83],"visual-semantic":[85],"with":[87,150,193],"pyramid":[89],"structure,":[90],"characterized":[91],"by":[92],"multiple":[93],"self-attention":[94],"layers,":[95],"while":[96,168],"eschewing":[97],"traditional":[99],"decoder.":[101],"This":[102],"design":[103],"choice":[104],"results":[105,121],"lightweight":[108,152],"model":[111],"capable":[112],"handling":[114],"inputs":[115],"varying":[117],"sizes.":[118],"Extensive":[119],"experimental":[120],"various":[123],"standard":[124],"datasets":[125],"both":[127],"Chinese":[128],"English":[130],"recognition":[133,166],"validate":[134],"superiority":[136],"VIPTR.":[138],"Notably,":[139],"VIPTR-T":[141],"(Tiny)":[142],"variant":[143,163],"delivers":[144],"highly":[145],"competitive":[146],"accuracy":[147,192],"par":[149],"other":[151],"SOTA":[156],"speeds.":[158],"Meanwhile,":[159],"VIPTR-L":[161],"(Large)":[162],"attains":[164],"greater":[165],"accuracy,":[167],"maintaining":[169],"parameter":[172],"count":[173],"favorable":[175],"speed.":[177],"Our":[178],"proposed":[179],"method":[180],"provides":[181],"compelling":[183],"solution":[184],"challenge,":[188],"blends":[190],"greatly":[196],"benefits":[197],"real-world":[198],"applications":[199],"requiring":[200],"reliable":[203],"recognition.":[205],"The":[206],"code":[207],"publicly":[209],"available":[210],"at":[211],"https://github.com/cxfyxl/VIPTR.":[212]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4391047376","counts_by_year":[],"updated_date":"2024-12-15T09:16:28.955297","created_date":"2024-01-20"}