{"id":"https://openalex.org/W4391047114","doi":"https://doi.org/10.48550/arxiv.2401.09977","title":"Material-Response-Informed DeepONet and its Application to Polycrystal Stress-strain Prediction in Crystal Plasticity","display_name":"Material-Response-Informed DeepONet and its Application to Polycrystal Stress-strain Prediction in Crystal Plasticity","publication_year":2024,"publication_date":"2024-01-01","ids":{"openalex":"https://openalex.org/W4391047114","doi":"https://doi.org/10.48550/arxiv.2401.09977"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.09977","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2401.09977","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5021285870","display_name":"Junyan He","orcid":"https://orcid.org/0000-0002-9180-4439"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"He, Junyan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102275053","display_name":"Deepankar Pal","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pal, Deepankar","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5009122406","display_name":"Ali Najafi","orcid":"https://orcid.org/0000-0003-0427-2495"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Najafi, Ali","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5015479227","display_name":"Diab W. Abueidda","orcid":"https://orcid.org/0000-0003-3594-2455"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Abueidda, Diab","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5032466147","display_name":"Seid Kori\u0107","orcid":"https://orcid.org/0000-0002-7330-6401"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Koric, Seid","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5004535893","display_name":"Iwona Jasiuk","orcid":"https://orcid.org/0000-0001-9663-4734"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jasiuk, Iwona","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9971,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9971,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13213","display_name":"Mechanical Failure Analysis and Simulation","score":0.9598,"subfield":{"id":"https://openalex.org/subfields/2210","display_name":"Mechanical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10736","display_name":"Hydrogen embrittlement and corrosion behaviors in metals","score":0.9583,"subfield":{"id":"https://openalex.org/subfields/2506","display_name":"Metals and Alloys"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/representative-elementary-volume","display_name":"Representative elementary volume","score":0.4551163}],"concepts":[{"id":"https://openalex.org/C79186407","wikidata":"https://www.wikidata.org/wiki/Q472074","display_name":"Plasticity","level":2,"score":0.5304864},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.528401},{"id":"https://openalex.org/C87976508","wikidata":"https://www.wikidata.org/wiki/Q1498213","display_name":"Microstructure","level":2,"score":0.52527535},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.5174259},{"id":"https://openalex.org/C21036866","wikidata":"https://www.wikidata.org/wiki/Q181767","display_name":"Stress (linguistics)","level":2,"score":0.5146564},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5003841},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.4910698},{"id":"https://openalex.org/C160635147","wikidata":"https://www.wikidata.org/wiki/Q7314248","display_name":"Representative elementary volume","level":3,"score":0.4551163},{"id":"https://openalex.org/C135628077","wikidata":"https://www.wikidata.org/wiki/Q220184","display_name":"Finite element method","level":2,"score":0.4434792},{"id":"https://openalex.org/C27158222","wikidata":"https://www.wikidata.org/wiki/Q5532422","display_name":"Generalizability theory","level":2,"score":0.419399},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.41168198},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3938209},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.35307634},{"id":"https://openalex.org/C66938386","wikidata":"https://www.wikidata.org/wiki/Q633538","display_name":"Structural engineering","level":1,"score":0.29227823},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.16452447},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.15898478},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.093099},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.09977","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2401.09977","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.09977","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4225593417","https://openalex.org/W410723623","https://openalex.org/W3160494304","https://openalex.org/W3022298670","https://openalex.org/W3006162251","https://openalex.org/W2573498121","https://openalex.org/W2413243053","https://openalex.org/W2118717649","https://openalex.org/W2035068594","https://openalex.org/W2015341305"],"abstract_inverted_index":{"Crystal":[0],"plasticity":[1],"(CP)":[2],"simulations":[3,256],"are":[4,18],"a":[5,47,61,75,110,127,151,176,189,249],"tool":[6],"for":[7,68,88,254],"understanding":[8],"how":[9],"microstructure":[10,70],"morphology":[11],"and":[12,17,94,130,132,159,166,182,206,224,241],"texture":[13],"affect":[14],"mechanical":[15],"properties":[16,156],"an":[19],"essential":[20],"component":[21],"of":[22,46,179,185,192,244],"elucidating":[23],"the":[24,43,80,84,106,120,172,211,228,236],"structure-property":[25],"relations.":[26],"However,":[27],"it":[28,248],"can":[29,123,214],"be":[30,124,215],"computationally":[31],"expensive.":[32],"Hence,":[33],"data-driven":[34,251],"machine":[35],"learning":[36],"models":[37],"have":[38,188],"been":[39],"applied":[40],"to":[41,52,82,105,135,217],"predict":[42],"mean-field":[44],"response":[45],"polycrystal":[48],"representative":[49],"volume":[50],"element":[51],"reduce":[53],"computation":[54],"time.":[55],"In":[56,169],"this":[57],"work,":[58],"we":[59,96,117],"proposed":[60,97],"novel":[62],"Deep":[63],"Operator":[64],"Network":[65],"(DeepONet)":[66],"architecture":[67],"predicting":[69],"stress-strain":[71,101],"response.":[72],"It":[73],"employs":[74],"convolutional":[76],"neural":[77],"network":[78],"in":[79,257],"trunk":[81],"encode":[83],"microstructure.":[85],"To":[86],"account":[87],"different":[89,222],"material":[90,129,155],"properties,":[91],"boundary":[92,164],"conditions,":[93],"loading,":[95],"using":[98,144,154],"single":[99,128,145],"crystal":[100,146],"curves":[102],"as":[103,148,157,199,201],"inputs":[104,158],"branch":[107],"network,":[108],"furnishing":[109],"material-response-informed":[111],"DeepONet.":[112],"Using":[113],"four":[114],"numerical":[115],"examples,":[116],"demonstrate":[118],"that":[119,143],"current":[121],"DeepONet":[122,213,246],"trained":[125,212],"on":[126,221],"loading":[131],"then":[133],"generalized":[134],"new":[136,173,203],"conditions":[137,165],"via":[138],"transfer":[139],"learning.":[140],"Results":[141],"show":[142],"responses":[147],"input":[149],"outperforms":[150],"similar":[152],"model":[153,174,253],"overcomes":[160],"limitations":[161],"with":[162],"changing":[163],"temporal":[167],"resolution.":[168],"all":[170],"cases,":[171],"achieved":[175],"$R^2$":[177],"value":[178],"above":[180],"0.99,":[181],"over":[183],"95\\%":[184],"predicted":[186],"stresses":[187],"relative":[190],"error":[191],"$\\le$":[193],"5\\%,":[194],"indicating":[195],"superior":[196],"accuracy.":[197],"With":[198],"few":[200],"20":[202],"data":[204],"points":[205],"under":[207],"1min":[208],"training":[209],"time,":[210],"fine-tuned":[216],"generate":[218],"accurate":[219],"predictions":[220],"materials":[223],"loading.":[225],"Once":[226],"trained,":[227],"prediction":[229],"speed":[230],"is":[231],"almost":[232],"$1\\times10^{4}$":[233],"times":[234],"faster":[235],"CP":[237,255],"simulations.":[238],"The":[239],"efficiency":[240],"high":[242],"generalizability":[243],"our":[245],"render":[247],"powerful":[250],"surrogate":[252],"multi-scale":[258],"analyses.":[259]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4391047114","counts_by_year":[],"updated_date":"2024-12-07T22:02:46.705030","created_date":"2024-01-20"}