{"id":"https://openalex.org/W4391046648","doi":"https://doi.org/10.48550/arxiv.2401.09500","title":"A Synchronized Layer-by-layer Growing Approach for Plausible Neuronal Morphology Generation","display_name":"A Synchronized Layer-by-layer Growing Approach for Plausible Neuronal Morphology Generation","publication_year":2024,"publication_date":"2024-01-01","ids":{"openalex":"https://openalex.org/W4391046648","doi":"https://doi.org/10.48550/arxiv.2401.09500"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.09500","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2401.09500","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5075694004","display_name":"Nianzu Yang","orcid":"https://orcid.org/0000-0002-6099-9261"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Nianzu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5073063939","display_name":"Kaipeng Zeng","orcid":"https://orcid.org/0000-0002-4798-7784"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zeng, Kaipeng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102677133","display_name":"Haotian Lu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lu, Haotian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110786409","display_name":"Yexin Wu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wu, Yexin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5027363239","display_name":"Zexin Yuan","orcid":"https://orcid.org/0009-0003-4929-6439"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yuan, Zexin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5019427467","display_name":"Shengdian Jiang","orcid":"https://orcid.org/0000-0002-2277-263X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jiang, Shengdian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102142710","display_name":"Jiaxiang Wu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wu, Jiaxiang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100384237","display_name":"Yimin Wang","orcid":"https://orcid.org/0000-0003-2515-6602"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Yimin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5087158377","display_name":"Junchi Yan","orcid":"https://orcid.org/0000-0001-9639-7679"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yan, Junchi","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12859","display_name":"Cell Image Analysis Techniques","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1304","display_name":"Biophysics"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T12859","display_name":"Cell Image Analysis Techniques","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1304","display_name":"Biophysics"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9754,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9649,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/morphology","display_name":"Morphology","score":0.8171193},{"id":"https://openalex.org/keywords/margin","display_name":"Margin (machine learning)","score":0.56096065},{"id":"https://openalex.org/keywords/brain-morphometry","display_name":"Brain morphometry","score":0.46316704},{"id":"https://openalex.org/keywords/code","display_name":"Code (set theory)","score":0.44420263},{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.4131865}],"concepts":[{"id":"https://openalex.org/C499950583","wikidata":"https://www.wikidata.org/wiki/Q183252","display_name":"Morphology (biology)","level":2,"score":0.8171193},{"id":"https://openalex.org/C2779227376","wikidata":"https://www.wikidata.org/wiki/Q6505497","display_name":"Layer (electronics)","level":2,"score":0.7214767},{"id":"https://openalex.org/C774472","wikidata":"https://www.wikidata.org/wiki/Q6760393","display_name":"Margin (machine learning)","level":2,"score":0.56096065},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.535031},{"id":"https://openalex.org/C89611455","wikidata":"https://www.wikidata.org/wiki/Q6804646","display_name":"Mechanism (biology)","level":2,"score":0.47965077},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4791619},{"id":"https://openalex.org/C2777210771","wikidata":"https://www.wikidata.org/wiki/Q4927124","display_name":"Block (permutation group theory)","level":2,"score":0.46690828},{"id":"https://openalex.org/C145940234","wikidata":"https://www.wikidata.org/wiki/Q4955830","display_name":"Brain morphometry","level":3,"score":0.46316704},{"id":"https://openalex.org/C2776760102","wikidata":"https://www.wikidata.org/wiki/Q5139990","display_name":"Code (set theory)","level":3,"score":0.44420263},{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.4131865},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.22343531},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.21076882},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.20262185},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.16116658},{"id":"https://openalex.org/C171250308","wikidata":"https://www.wikidata.org/wiki/Q11468","display_name":"Nanotechnology","level":1,"score":0.15625405},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.11323637},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.097835094},{"id":"https://openalex.org/C90856448","wikidata":"https://www.wikidata.org/wiki/Q431","display_name":"Zoology","level":1,"score":0.0839141},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.082511306},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.0},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C143409427","wikidata":"https://www.wikidata.org/wiki/Q161238","display_name":"Magnetic resonance imaging","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.09500","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2401.09500","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.09500","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4297051394","https://openalex.org/W3131327266","https://openalex.org/W3013693939","https://openalex.org/W2909431601","https://openalex.org/W2803255133","https://openalex.org/W2752972570","https://openalex.org/W2734887215","https://openalex.org/W2566616303","https://openalex.org/W2159052453","https://openalex.org/W2145836866"],"abstract_inverted_index":{"Neuronal":[0],"morphology":[1,17,29,47,65],"is":[2,19,108],"essential":[3],"for":[4,28],"studying":[5],"brain":[6],"functioning":[7],"and":[8,90,102,117],"understanding":[9],"neurodegenerative":[10],"disorders.":[11],"As":[12],"the":[13,69,98,103,111],"acquiring":[14],"of":[15,41,74,94,105,114],"real-world":[16,135],"data":[18],"expensive,":[20],"computational":[21],"approaches":[22],"especially":[23],"learning-based":[24],"ones":[25],"e.g.":[26],"MorphVAE":[27,141],"generation":[30,100,104],"were":[31],"recently":[32],"studied,":[33],"which":[34,59],"are":[35],"often":[36],"conducted":[37],"in":[38,80],"a":[39,44,53,75,92,122,143],"way":[40],"randomly":[42],"augmenting":[43],"given":[45],"authentic":[46],"to":[48,61,152],"achieve":[49],"plausibility.":[50],"Under":[51],"such":[52],"setting,":[54],"this":[55],"paper":[56],"proposes":[57],"\\textbf{MorphGrower}":[58],"aims":[60],"generate":[62,119],"more":[63],"plausible":[64],"samples":[66],"by":[67,87,142],"mimicking":[68],"natural":[70],"growth":[71],"mechanism":[72],"instead":[73],"one-shot":[76],"treatment":[77],"as":[78,97],"done":[79],"MorphVAE.":[81],"Specifically,":[82],"MorphGrower":[83,139],"generates":[84],"morphologies":[85,120],"layer":[86,88,107],"synchronously":[89],"chooses":[91],"pair":[93],"sibling":[95],"branches":[96],"basic":[99],"block,":[101],"each":[106],"conditioned":[109],"on":[110,133],"morphological":[112],"structure":[113],"previous":[115],"layers":[116],"then":[118],"via":[121],"conditional":[123],"variational":[124],"autoencoder":[125],"with":[126],"spherical":[127],"latent":[128],"space.":[129],"Extensive":[130],"experimental":[131],"results":[132],"four":[134],"datasets":[136],"demonstrate":[137],"that":[138],"outperforms":[140],"notable":[144],"margin.":[145],"Our":[146],"code":[147],"will":[148],"be":[149],"publicly":[150],"available":[151],"facilitate":[153],"future":[154],"research.":[155]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4391046648","counts_by_year":[],"updated_date":"2025-01-21T03:44:38.166661","created_date":"2024-01-20"}