{"id":"https://openalex.org/W4391046629","doi":"https://doi.org/10.48550/arxiv.2401.09452","title":"Incorporating Riemannian Geometric Features for Learning Coefficient of Pressure Distributions on Airplane Wings","display_name":"Incorporating Riemannian Geometric Features for Learning Coefficient of Pressure Distributions on Airplane Wings","publication_year":2024,"publication_date":"2024-01-01","ids":{"openalex":"https://openalex.org/W4391046629","doi":"https://doi.org/10.48550/arxiv.2401.09452"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.09452","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2401.09452","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5076937193","display_name":"Liwei Hu","orcid":"https://orcid.org/0000-0003-4994-9252"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hu, Liwei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028467074","display_name":"Wenyong Wang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Wenyong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100321689","display_name":"Xiang Yu","orcid":"https://orcid.org/0000-0003-1014-3905"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xiang, Yu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5103194945","display_name":"Stefan Sommer","orcid":"https://orcid.org/0000-0001-6784-0328"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sommer, Stefan","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11206","display_name":"Model Reduction and Neural Networks","score":0.9944,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11206","display_name":"Model Reduction and Neural Networks","score":0.9944,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12125","display_name":"Aerospace and Aviation Technology","score":0.9905,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9775,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/riemannian-geometry","display_name":"Riemannian Geometry","score":0.5111216},{"id":"https://openalex.org/keywords/pressure-coefficient","display_name":"Pressure coefficient","score":0.4182701}],"concepts":[{"id":"https://openalex.org/C112124176","wikidata":"https://www.wikidata.org/wiki/Q4698744","display_name":"Airfoil","level":2,"score":0.80631524},{"id":"https://openalex.org/C13393347","wikidata":"https://www.wikidata.org/wiki/Q8424","display_name":"Aerodynamics","level":2,"score":0.70836484},{"id":"https://openalex.org/C195065555","wikidata":"https://www.wikidata.org/wiki/Q214881","display_name":"Curvature","level":2,"score":0.60768294},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.5751961},{"id":"https://openalex.org/C181104567","wikidata":"https://www.wikidata.org/wiki/Q761383","display_name":"Riemannian geometry","level":2,"score":0.5111216},{"id":"https://openalex.org/C90119067","wikidata":"https://www.wikidata.org/wiki/Q43260","display_name":"Polynomial","level":2,"score":0.5070455},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.5065409},{"id":"https://openalex.org/C527307","wikidata":"https://www.wikidata.org/wiki/Q370906","display_name":"Angle of attack","level":3,"score":0.4911134},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.48608854},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.45390406},{"id":"https://openalex.org/C41994538","wikidata":"https://www.wikidata.org/wiki/Q1260777","display_name":"Pressure coefficient","level":2,"score":0.4182701},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.3666976},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.33085957},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.32578444},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.19636485},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.14093882},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.09452","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2401.09452","pdf_url":"http://arxiv.org/pdf/2401.09452","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2401.09452","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.09452","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Affordable and clean energy","score":0.42,"id":"https://metadata.un.org/sdg/7"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3205117063","https://openalex.org/W3157137090","https://openalex.org/W3139949391","https://openalex.org/W253480778","https://openalex.org/W2385944203","https://openalex.org/W2380526024","https://openalex.org/W2334573633","https://openalex.org/W2048257397","https://openalex.org/W1989440096","https://openalex.org/W1978072525"],"abstract_inverted_index":{"The":[0],"aerodynamic":[1,113],"coefficients":[2],"of":[3,15,23,38,46,66,85,91,111,129,186,191],"aircrafts":[4],"are":[5],"significantly":[6],"impacted":[7],"by":[8,116,188],"its":[9],"geometry,":[10],"especially":[11],"when":[12],"the":[13,21,36,43,53,63,83,104,109,149,163,180,194],"angle":[14],"attack":[16],"(AoA)":[17],"is":[18,49],"large.":[19],"In":[20],"field":[22],"aerodynamics,":[24],"traditional":[25],"polynomial-based":[26,56],"parameterization":[27],"uses":[28],"as":[29,32,101],"few":[30],"parameters":[31],"possible":[33],"to":[34,103,121,161,173],"describe":[35],"geometry":[37,45,117],"an":[39,189],"airfoil.":[40],"However,":[41],"because":[42],"3D":[44,70],"a":[47,67,157],"wing":[48,68,134],"more":[50],"complicated":[51],"than":[52],"2D":[54,86,89],"airfoil,":[55],"parameterizations":[57],"have":[58],"difficulty":[59],"in":[60,69],"accurately":[61],"representing":[62],"entire":[64],"shape":[65,84],"space.":[71],"Existing":[72],"deep":[73,158],"learning-based":[74],"methods":[75],"can":[76,107],"extract":[77],"massive":[78],"latent":[79],"neural":[80,105],"representations":[81],"for":[82,126,193],"airfoils":[87],"or":[88],"slices":[90],"wings.":[92],"Recent":[93],"studies":[94],"highlight":[95],"that":[96,169],"directly":[97],"taking":[98],"geometric":[99,124,139,150],"features":[100,125,140],"inputs":[102,148],"networks":[106],"improve":[108],"accuracy":[110],"predicted":[112,181],"coefficients.":[114],"Motivated":[115],"theory,":[118],"we":[119],"propose":[120],"incorporate":[122],"Riemannian":[123],"learning":[127,159],"Coefficient":[128],"Pressure":[130],"(CP)":[131],"distributions":[132],"on":[133],"surfaces.":[135],"Our":[136],"method":[137],"calculates":[138],"(Riemannian":[141],"metric,":[142],"connection,":[143],"and":[144,146,153],"curvature)":[145],"further":[147],"features,":[151],"coordinates":[152],"flight":[154],"conditions":[155],"into":[156],"model":[160],"predict":[162],"CP":[164,187],"distribution.":[165],"Experimental":[166],"results":[167],"show":[168],"our":[170],"method,":[171],"compared":[172],"state-of-the-art":[174],"Deep":[175],"Attention":[176],"Network":[177],"(DAN),":[178],"reduces":[179],"mean":[182],"square":[183],"error":[184],"(MSE)":[185],"average":[190],"8.41%":[192],"DLR-F11":[195],"aircraft":[196],"test":[197],"set.":[198]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4391046629","counts_by_year":[],"updated_date":"2025-01-03T09:52:54.257719","created_date":"2024-01-20"}