{"id":"https://openalex.org/W4391013587","doi":"https://doi.org/10.48550/arxiv.2401.09376","title":"Unlocking Unlabeled Data: Ensemble Learning with the Hui- Walter Paradigm for Performance Estimation in Online and Static Settings","display_name":"Unlocking Unlabeled Data: Ensemble Learning with the Hui- Walter Paradigm for Performance Estimation in Online and Static Settings","publication_year":2024,"publication_date":"2024-01-01","ids":{"openalex":"https://openalex.org/W4391013587","doi":"https://doi.org/10.48550/arxiv.2401.09376"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.09376","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2401.09376","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5093744086","display_name":"Kevin Slote","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Slote, Kevin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5034147095","display_name":"Elaine Lee","orcid":"https://orcid.org/0000-0002-0627-5297"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lee, Elaine","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10243","display_name":"Statistical Methods and Bayesian Inference","score":0.9474,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10243","display_name":"Statistical Methods and Bayesian Inference","score":0.9474,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12761","display_name":"Data Stream Mining Techniques","score":0.9425,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10410","display_name":"COVID-19 epidemiological studies","score":0.9402,"subfield":{"id":"https://openalex.org/subfields/2611","display_name":"Modeling and Simulation"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/ground-truth","display_name":"Ground truth","score":0.7599243}],"concepts":[{"id":"https://openalex.org/C146849305","wikidata":"https://www.wikidata.org/wiki/Q370766","display_name":"Ground truth","level":2,"score":0.7599243},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.706637},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.7010431},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.67071253},{"id":"https://openalex.org/C177769412","wikidata":"https://www.wikidata.org/wiki/Q278090","display_name":"Prior probability","level":3,"score":0.45049372},{"id":"https://openalex.org/C51167844","wikidata":"https://www.wikidata.org/wiki/Q4422623","display_name":"Latent variable","level":2,"score":0.44173086},{"id":"https://openalex.org/C26517878","wikidata":"https://www.wikidata.org/wiki/Q228039","display_name":"Key (lock)","level":2,"score":0.42481953},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.40307435},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.36620384},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.09376","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2401.09376","pdf_url":"http://arxiv.org/pdf/2401.09376","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2401.09376","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.09376","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.62,"display_name":"Good health and well-being","id":"https://metadata.un.org/sdg/3"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3168675052","https://openalex.org/W2795035211","https://openalex.org/W2580650124","https://openalex.org/W2562263695","https://openalex.org/W2160108762","https://openalex.org/W2147201983","https://openalex.org/W2135187896","https://openalex.org/W2017034551","https://openalex.org/W2015518264","https://openalex.org/W1718066205"],"abstract_inverted_index":{"In":[0,41],"the":[1,13,50,62,158,168],"realm":[2],"of":[3,15,64,170],"machine":[4,65,175],"learning":[5,176],"and":[6,22,59,84,129,144,186],"statistical":[7],"modeling,":[8],"practitioners":[9],"often":[10,27],"work":[11],"under":[12,184],"assumption":[14,26],"accessible,":[16],"static,":[17],"labeled":[18,163],"data":[19,32,109,115,122,188],"for":[20,99,107,160,180],"evaluation":[21],"training.":[23],"However,":[24],"this":[25,42,46,97],"deviates":[28],"from":[29],"reality":[30],"where":[31,88],"may":[33],"be":[34],"private,":[35],"encrypted,":[36],"difficult-":[37],"to-measure,":[38],"or":[39,162],"unlabeled.":[40],"paper,":[43],"we":[44,147],"bridge":[45],"gap":[47],"by":[48,178],"adapting":[49],"Hui-Walter":[51],"paradigm,":[52],"a":[53],"method":[54],"traditionally":[55],"applied":[56],"in":[57,86],"epidemiology":[58],"medicine,":[60],"to":[61,71,119,133,150,173],"field":[63],"learning.":[66],"This":[67,165],"approach":[68],"enables":[69],"us":[70],"estimate":[72,151],"key":[73],"performance":[74],"metrics":[75],"such":[76],"as":[77],"false":[78,81],"positive":[79],"rate,":[80,83],"negative":[82],"priors":[85],"scenarios":[87],"no":[89],"ground":[90],"truth":[91],"is":[92],"available.":[93],"We":[94],"further":[95],"extend":[96],"paradigm":[98],"handling":[100],"online":[101],"data,":[102],"opening":[103],"up":[104],"new":[105],"possibilities":[106],"dynamic":[108,185],"environments.":[110],"Our":[111],"methodology":[112,172],"involves":[113],"partitioning":[114],"into":[116],"latent":[117],"classes":[118],"simulate":[120],"multiple":[121,135,145],"populations":[123,126],"(if":[124],"natural":[125],"are":[127,148],"unavailable)":[128],"independently":[130],"training":[131],"models":[132],"replicate":[134],"tests.":[136],"By":[137],"cross-tabulating":[138],"binary":[139],"outcomes":[140],"across":[141],"ensemble":[142],"categorizers":[143],"populations,":[146],"able":[149],"unknown":[152],"parameters":[153],"through":[154],"Gibbs":[155],"sampling,":[156],"eliminating":[157],"need":[159],"ground-truth":[161],"data.":[164],"paper":[166],"showcases":[167],"potential":[169],"our":[171],"transform":[174],"practices":[177],"allowing":[179],"accurate":[181],"model":[182],"assessment":[183],"uncertain":[187],"conditions.":[189]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4391013587","counts_by_year":[],"updated_date":"2024-12-06T12:14:35.198416","created_date":"2024-01-19"}