{"id":"https://openalex.org/W4390833606","doi":"https://doi.org/10.48550/arxiv.2401.05982","title":"A tree-based varying coefficient model","display_name":"A tree-based varying coefficient model","publication_year":2024,"publication_date":"2024-01-01","ids":{"openalex":"https://openalex.org/W4390833606","doi":"https://doi.org/10.48550/arxiv.2401.05982"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.05982","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2401.05982","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5054037372","display_name":"Henning Zakrisson","orcid":"https://orcid.org/0009-0007-4248-6933"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zakrisson, Henning","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5026550451","display_name":"Mathias Lindholm","orcid":"https://orcid.org/0000-0001-7235-384X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lindholm, Mathias","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":78},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9707,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9707,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9025,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/overfitting","display_name":"Overfitting","score":0.943877},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.56679404},{"id":"https://openalex.org/keywords/early-stopping","display_name":"Early stopping","score":0.49671584},{"id":"https://openalex.org/keywords/tree","display_name":"Tree (set theory)","score":0.4625399},{"id":"https://openalex.org/keywords/gradient-boosting","display_name":"Gradient boosting","score":0.41631642}],"concepts":[{"id":"https://openalex.org/C22019652","wikidata":"https://www.wikidata.org/wiki/Q331309","display_name":"Overfitting","level":3,"score":0.943877},{"id":"https://openalex.org/C33676613","wikidata":"https://www.wikidata.org/wiki/Q13415176","display_name":"Dimension (graph theory)","level":2,"score":0.6325668},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.56679404},{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.55439955},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.54073083},{"id":"https://openalex.org/C5465570","wikidata":"https://www.wikidata.org/wiki/Q5326898","display_name":"Early stopping","level":3,"score":0.49671584},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.4949512},{"id":"https://openalex.org/C113174947","wikidata":"https://www.wikidata.org/wiki/Q2859736","display_name":"Tree (set theory)","level":2,"score":0.4625399},{"id":"https://openalex.org/C70153297","wikidata":"https://www.wikidata.org/wiki/Q5591907","display_name":"Gradient boosting","level":3,"score":0.41631642},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.41508037},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.37245286},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.34322584},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.14748272},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.05982","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2401.05982","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.05982","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4387799548","https://openalex.org/W4320854463","https://openalex.org/W4295122168","https://openalex.org/W4288022214","https://openalex.org/W4254751698","https://openalex.org/W3155717344","https://openalex.org/W3040157805","https://openalex.org/W2922073769","https://openalex.org/W1770458422","https://openalex.org/W1582774210"],"abstract_inverted_index":{"The":[0,43,64,79],"paper":[1],"introduces":[2],"a":[3,32],"tree-based":[4],"varying":[5,11],"coefficient":[6,29],"model":[7,60,77,80],"(VCM)":[8],"where":[9],"the":[10,16,28,50,84,100],"coefficients":[12],"are":[13,115],"modelled":[14],"using":[15,31],"cyclic":[17],"gradient":[18],"boosting":[19],"machine":[20],"(CGBM)":[21],"from":[22],"Delong":[23],"et":[24],"al.":[25],"(2023).":[26],"Modelling":[27],"functions":[30],"CGBM":[33],"allows":[34,70],"for":[35,71],"dimension-wise":[36,44],"early":[37,45],"stopping":[38,46],"and":[39,75,87,96,99],"feature":[40,67,73],"importance":[41,68],"scores.":[42],"not":[47],"only":[48],"reduces":[49],"risk":[51],"of":[52,66,109,111,119],"dimension-specific":[53],"overfitting,":[54],"but":[55],"also":[56],"reveals":[57],"differences":[58],"in":[59,94,107],"complexity":[61],"across":[62],"dimensions.":[63],"use":[65],"scores":[69],"simple":[72],"selection":[74],"easy":[76],"interpretation.":[78],"is":[81],"evaluated":[82],"on":[83],"same":[85],"simulated":[86],"real":[88],"data":[89],"examples":[90],"as":[91],"those":[92,118],"used":[93],"Richman":[95],"W\\\"uthrich":[97],"(2023),":[98],"results":[101,106],"show":[102],"that":[103,114],"it":[104],"produces":[105],"terms":[108],"out":[110],"sample":[112],"loss":[113],"comparable":[116],"to":[117],"their":[120],"neural":[121],"network-based":[122],"VCM":[123],"called":[124],"LocalGLMnet.":[125]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4390833606","counts_by_year":[],"updated_date":"2025-04-09T12:27:15.945011","created_date":"2024-01-13"}