{"id":"https://openalex.org/W4390690068","doi":"https://doi.org/10.48550/arxiv.2401.02433","title":"FedDiff: Diffusion Model Driven Federated Learning for Multi-Modal and Multi-Clients","display_name":"FedDiff: Diffusion Model Driven Federated Learning for Multi-Modal and Multi-Clients","publication_year":2024,"publication_date":"2024-01-01","ids":{"openalex":"https://openalex.org/W4390690068","doi":"https://doi.org/10.48550/arxiv.2401.02433"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.02433","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2401.02433","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5057418761","display_name":"Daixun Li","orcid":"https://orcid.org/0009-0006-8689-6929"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, DaiXun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5052163069","display_name":"Weiying Xie","orcid":"https://orcid.org/0000-0001-8310-024X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xie, Weiying","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100398250","display_name":"Zixuan Wang","orcid":"https://orcid.org/0000-0002-6823-5573"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, ZiXuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102602490","display_name":"YiBing Lu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lu, YiBing","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5053415067","display_name":"Yunsong Li","orcid":"https://orcid.org/0009-0001-8022-3081"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Yunsong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5065061505","display_name":"Leyuan Fang","orcid":"https://orcid.org/0000-0003-2351-4461"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fang, Leyuan","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9533,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9533,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.913,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.4544289},{"id":"https://openalex.org/keywords/sensor-fusion","display_name":"Sensor Fusion","score":0.44249675}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76679796},{"id":"https://openalex.org/C71139939","wikidata":"https://www.wikidata.org/wiki/Q910194","display_name":"Modal","level":2,"score":0.5206998},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.5146316},{"id":"https://openalex.org/C26517878","wikidata":"https://www.wikidata.org/wiki/Q228039","display_name":"Key (lock)","level":2,"score":0.50242424},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.4859432},{"id":"https://openalex.org/C62611344","wikidata":"https://www.wikidata.org/wiki/Q1062658","display_name":"Node (physics)","level":2,"score":0.4724156},{"id":"https://openalex.org/C2776436953","wikidata":"https://www.wikidata.org/wiki/Q5163215","display_name":"Consistency (knowledge bases)","level":2,"score":0.46883693},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.4544289},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.44716087},{"id":"https://openalex.org/C33954974","wikidata":"https://www.wikidata.org/wiki/Q486494","display_name":"Sensor fusion","level":2,"score":0.44249675},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.44163114},{"id":"https://openalex.org/C120314980","wikidata":"https://www.wikidata.org/wiki/Q180634","display_name":"Distributed computing","level":1,"score":0.4202041},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.32161605},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.1162},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C66938386","wikidata":"https://www.wikidata.org/wiki/Q633538","display_name":"Structural engineering","level":1,"score":0.0},{"id":"https://openalex.org/C188027245","wikidata":"https://www.wikidata.org/wiki/Q750446","display_name":"Polymer chemistry","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.02433","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2401.02433","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.02433","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/17","score":0.41,"display_name":"Partnerships for the goals"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W613940353","https://openalex.org/W4304185162","https://openalex.org/W3160965418","https://openalex.org/W3006282800","https://openalex.org/W2462100143","https://openalex.org/W2379392295","https://openalex.org/W2320915480","https://openalex.org/W2061685118","https://openalex.org/W1770503332","https://openalex.org/W1603736412"],"abstract_inverted_index":{"With":[0],"the":[1,9,56,72,91,98,135,145,175,187,191,207],"rapid":[2],"development":[3],"of":[4,11,75,94,101,144,163,177,209,214],"imaging":[5],"sensor":[6],"technology":[7],"in":[8,38,65,161,212],"field":[10],"remote":[12,15],"sensing,":[13],"multi-modal":[14,86,116],"sensing":[16],"data":[17,77,93,100,138],"fusion":[18,74],"has":[19],"emerged":[20],"as":[21,89],"a":[22,62,66,115,127,198],"crucial":[23],"research":[24],"direction":[25],"for":[26],"land":[27],"cover":[28],"classification":[29,43],"tasks.":[30],"While":[31],"diffusion":[32,57,118,129,152,188],"models":[33,40,46,153],"have":[34],"made":[35],"great":[36],"progress":[37],"generative":[39],"and":[41,51,97,179,196,203,217],"image":[42,215],"tasks,":[44],"existing":[45],"primarily":[47],"focus":[48],"on":[49,105,167],"single-modality":[50],"single-client":[52],"control,":[53,87],"that":[54,151],"is,":[55],"process":[58],"is":[59,81,150],"driven":[60,154],"by":[61,155],"single":[63,67],"modal":[64,137],"computing":[68],"node.":[69],"To":[70],"facilitate":[71],"secure":[73],"heterogeneous":[76],"from":[78],"clients,":[79,184],"it":[80],"necessary":[82],"to":[83],"enable":[84],"distributed":[85],"such":[88],"merging":[90],"hyperspectral":[92],"organization":[95,102],"A":[96],"LiDAR":[99],"B":[103],"privately":[104],"each":[106],"base":[107],"station":[108],"client.":[109],"In":[110],"this":[111],"study,":[112],"we":[113,185],"propose":[114],"collaborative":[117],"federated":[119,192],"learning":[120,193],"framework":[121,125,211],"called":[122],"FedDiff.":[123],"Our":[124,147],"establishes":[126],"dual-branch":[128],"model":[130,189],"feature":[131],"extraction":[132],"setup,":[133],"where":[134],"two":[136],"are":[139,158],"inputted":[140],"into":[141,190],"separate":[142],"branches":[143],"encoder.":[146],"key":[148],"insight":[149],"different":[156],"modalities":[157],"inherently":[159],"complementary":[160],"terms":[162,213],"potential":[164],"denoising":[165],"steps":[166],"which":[168],"bilateral":[169],"connections":[170],"can":[171],"be":[172],"built.":[173],"Considering":[174],"challenge":[176],"private":[178],"efficient":[180],"communication":[181,194,200],"between":[182],"multiple":[183],"embed":[186],"structure,":[195],"introduce":[197],"lightweight":[199],"module.":[201],"Qualitative":[202],"quantitative":[204],"experiments":[205],"validate":[206],"superiority":[208],"our":[210],"quality":[216],"conditional":[218],"consistency.":[219]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4390690068","counts_by_year":[],"updated_date":"2025-04-23T00:22:47.845214","created_date":"2024-01-13"}