{"id":"https://openalex.org/W4390601143","doi":"https://doi.org/10.48550/arxiv.2401.01384","title":"Strong Transitivity Relations and Graph Neural Networks","display_name":"Strong Transitivity Relations and Graph Neural Networks","publication_year":2024,"publication_date":"2024-01-01","ids":{"openalex":"https://openalex.org/W4390601143","doi":"https://doi.org/10.48550/arxiv.2401.01384"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.01384","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2401.01384","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5114115807","display_name":"Yassin Mohamadi","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mohamadi, Yassin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5049221896","display_name":"Mostafa Haghir Chehreghani","orcid":"https://orcid.org/0000-0003-3436-0541"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chehreghani, Mostafa Haghir","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.908383,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":78,"max":89},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13702","display_name":"Machine Learning in Healthcare","score":0.9816,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.4632422}],"concepts":[{"id":"https://openalex.org/C191399111","wikidata":"https://www.wikidata.org/wiki/Q64861","display_name":"Transitive relation","level":2,"score":0.8886203},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.5955157},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5932871},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.56254756},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.5080395},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4744552},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.4632422},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.37079838},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.27417487},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.13607508},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.01384","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2401.01384","pdf_url":"http://arxiv.org/pdf/2401.01384","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2401.01384","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.01384","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","score":0.56,"id":"https://metadata.un.org/sdg/11"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4312527695","https://openalex.org/W3007067598","https://openalex.org/W2932872266","https://openalex.org/W2361167282","https://openalex.org/W2359420171","https://openalex.org/W2271118953","https://openalex.org/W2091342995","https://openalex.org/W2006385248","https://openalex.org/W1677394555","https://openalex.org/W1528932152"],"abstract_inverted_index":{"Local":[0],"neighborhoods":[1,42],"play":[2],"a":[3],"crucial":[4],"role":[5],"in":[6,9],"embedding":[7],"generation":[8],"graph-based":[10],"learning.":[11],"It":[12],"is":[13,54],"commonly":[14],"believed":[15],"that":[16,22,53,116],"nodes":[17],"ought":[18],"to":[19,33,43,65],"have":[20],"embeddings":[21],"resemble":[23],"those":[24],"of":[25,38,51,122],"their":[26],"neighbors.":[27],"In":[28],"this":[29],"research,":[30],"we":[31],"try":[32],"carefully":[34],"expand":[35],"the":[36,44,74,120],"concept":[37],"similarity":[39,52],"from":[40,100],"nearby":[41],"entire":[45],"graph.":[46,76],"We":[47,77,106],"provide":[48],"an":[49],"extension":[50],"based":[55],"on":[56],"transitivity":[57,98],"relations,":[58],"which":[59,84],"enables":[60],"Graph":[61,80],"Neural":[62,81],"Networks":[63],"(GNNs)":[64],"capture":[66],"both":[67],"global":[68,93],"similarities":[69,72,94],"and":[70,103,114],"local":[71,87],"over":[73,110],"whole":[75],"introduce":[78],"Transitivity":[79],"Network":[82],"(TransGNN),":[83],"more":[85],"than":[86],"node":[88,131],"similarities,":[89],"takes":[90],"into":[91],"account":[92],"by":[95],"distinguishing":[96],"strong":[97],"relations":[99],"weak":[101],"ones":[102],"exploiting":[104],"them.":[105],"evaluate":[107],"our":[108],"model":[109],"several":[111,123],"real-world":[112],"datasets":[113],"showed":[115],"it":[117],"considerably":[118],"improves":[119],"performance":[121],"well-known":[124],"GNN":[125],"models,":[126],"for":[127],"tasks":[128],"such":[129],"as":[130],"classification.":[132]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4390601143","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-04-04T05:51:15.494504","created_date":"2024-01-05"}