{"id":"https://openalex.org/W4390529374","doi":"https://doi.org/10.48550/arxiv.2401.00756","title":"MPRE: Multi-perspective Patient Representation Extractor for Disease Prediction","display_name":"MPRE: Multi-perspective Patient Representation Extractor for Disease Prediction","publication_year":2024,"publication_date":"2024-01-01","ids":{"openalex":"https://openalex.org/W4390529374","doi":"https://doi.org/10.48550/arxiv.2401.00756"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.00756","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2401.00756","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5090917975","display_name":"Ziyue Yu","orcid":"https://orcid.org/0000-0002-1481-9362"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yu, Ziyue","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100449263","display_name":"Jiayi Wang","orcid":"https://orcid.org/0000-0002-7785-3381"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Jiayi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100513359","display_name":"Wuman Luo","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Luo, Wuman","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110841947","display_name":"Rita Tse","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tse, Rita","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5048063581","display_name":"Giovanni Pau","orcid":"https://orcid.org/0000-0003-2216-7170"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pau, Giovanni","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T13702","display_name":"Machine Learning in Healthcare","score":0.9892,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T13702","display_name":"Machine Learning in Healthcare","score":0.9892,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12647","display_name":"Traditional Chinese Medicine Studies","score":0.9108,"subfield":{"id":"https://openalex.org/subfields/2707","display_name":"Complementary and alternative medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11396","display_name":"Artificial Intelligence in Healthcare","score":0.9082,"subfield":{"id":"https://openalex.org/subfields/3605","display_name":"Health Information Management"},"field":{"id":"https://openalex.org/fields/36","display_name":"Health Professions"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/extractor","display_name":"Extractor","score":0.7048605},{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.6573943},{"id":"https://openalex.org/keywords/variation","display_name":"Variation (astronomy)","score":0.6100663},{"id":"https://openalex.org/keywords/baseline","display_name":"Baseline (sea)","score":0.5238036},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.4283623},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.42377448}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.730014},{"id":"https://openalex.org/C117978034","wikidata":"https://www.wikidata.org/wiki/Q5422192","display_name":"Extractor","level":2,"score":0.7048605},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.6573943},{"id":"https://openalex.org/C12713177","wikidata":"https://www.wikidata.org/wiki/Q1900281","display_name":"Perspective (graphical)","level":2,"score":0.62918603},{"id":"https://openalex.org/C2778334786","wikidata":"https://www.wikidata.org/wiki/Q1586270","display_name":"Variation (astronomy)","level":2,"score":0.6100663},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.574159},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.54791623},{"id":"https://openalex.org/C12725497","wikidata":"https://www.wikidata.org/wiki/Q810247","display_name":"Baseline (sea)","level":2,"score":0.5238036},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5109214},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.4283623},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.42377448},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.4217972},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3683265},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C111368507","wikidata":"https://www.wikidata.org/wiki/Q43518","display_name":"Oceanography","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C21880701","wikidata":"https://www.wikidata.org/wiki/Q2144042","display_name":"Process engineering","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C44870925","wikidata":"https://www.wikidata.org/wiki/Q37547","display_name":"Astrophysics","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.00756","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2401.00756","pdf_url":"http://arxiv.org/pdf/2401.00756","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2401.00756","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2401.00756","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.43,"display_name":"Partnerships for the goals","id":"https://metadata.un.org/sdg/17"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4289536128","https://openalex.org/W3164948662","https://openalex.org/W3153597579","https://openalex.org/W2905271011","https://openalex.org/W2793270624","https://openalex.org/W2556800355","https://openalex.org/W2386430105","https://openalex.org/W2383111961","https://openalex.org/W2365952365","https://openalex.org/W2356521405"],"abstract_inverted_index":{"Patient":[0,79],"representation":[1],"learning":[2,69],"based":[3,126],"on":[4,24,127,181],"electronic":[5],"health":[6],"records":[7,63],"(EHR)":[8],"is":[9],"a":[10],"critical":[11],"task":[12,17],"for":[13,83],"disease":[14,84,165],"prediction.":[15,85],"This":[16],"aims":[18],"to":[19,93,154,163],"effectively":[20],"extract":[21,94],"useful":[22],"information":[23,99],"dynamic":[25,57,101],"features.":[26,58],"Although":[27],"various":[28],"existing":[29],"works":[30],"have":[31],"achieved":[32],"remarkable":[33],"progress,":[34],"the":[35,45,49,52,65,77,95,104,110,114,122,132,141,148,156,164,170],"model":[36],"performance":[37,66,171],"can":[38,108],"be":[39],"further":[40],"improved":[41],"by":[42,140],"fully":[43],"extracting":[44],"trends,":[46],"variations,":[47],"and":[48,54,97,129,136,174,200],"correlation":[50],"between":[51,134],"trends":[53],"variations":[55,162],"in":[56,103,160,196],"In":[59,113],"addition,":[60],"sparse":[61],"visit":[62],"limit":[64],"of":[67,100,158,172,198],"deep":[68],"models.":[70],"To":[71,168],"address":[72],"these":[73],"issues,":[74],"we":[75,87,120,146,177],"propose":[76,88,147],"Multi-perspective":[78],"Representation":[80],"Extractor":[81],"(MPRE)":[82],"Specifically,":[86],"Frequency":[89],"Transformation":[90],"Module":[91],"(FTM)":[92],"trend":[96,128,135],"variation":[98,137],"features":[102],"time-frequency":[105],"domain,":[106],"which":[107],"enhance":[109],"feature":[111],"representation.":[112],"2D":[115,123],"Multi-Extraction":[116],"Network":[117],"(2D":[118],"MEN),":[119],"form":[121],"temporal":[124],"tensor":[125],"variation.":[130],"Then,":[131],"correlations":[133],"are":[138],"captured":[139],"proposed":[142],"dilated":[143],"operation.":[144],"Moreover,":[145],"First-Order":[149],"Difference":[150],"Attention":[151],"Mechanism":[152],"(FODAM)":[153],"calculate":[155],"contributions":[157],"differences":[159],"adjacent":[161],"diagnosis":[166],"adaptively.":[167],"evaluate":[169],"MPRE":[173,191],"baseline":[175,194],"methods,":[176],"conduct":[178],"extensive":[179],"experiments":[180],"two":[182],"real-world":[183],"public":[184],"datasets.":[185],"The":[186],"experiment":[187],"results":[188],"show":[189],"that":[190],"outperforms":[192],"state-of-the-art":[193],"methods":[195],"terms":[197],"AUROC":[199],"AUPRC.":[201]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4390529374","counts_by_year":[],"updated_date":"2025-04-23T22:46:25.664059","created_date":"2024-01-03"}