{"id":"https://openalex.org/W4390437248","doi":"https://doi.org/10.48550/arxiv.2312.16455","title":"Learn From Orientation Prior for Radiograph Super-Resolution: Orientation Operator Transformer","display_name":"Learn From Orientation Prior for Radiograph Super-Resolution: Orientation Operator Transformer","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4390437248","doi":"https://doi.org/10.48550/arxiv.2312.16455"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.16455","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2312.16455","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101074338","display_name":"Yongsong Huang","orcid":"https://orcid.org/0000-0003-3114-9206"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Huang, Yongsong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5009192524","display_name":"Tomo Miyazaki","orcid":"https://orcid.org/0000-0001-5205-0542"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Miyazaki, Tomo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100359288","display_name":"Xiaofeng Liu","orcid":"https://orcid.org/0000-0002-4514-2016"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Xiaofeng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103018899","display_name":"Kaiyuan Jiang","orcid":"https://orcid.org/0000-0002-6155-2613"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jiang, Kaiyuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5017897073","display_name":"Zhengmi Tang","orcid":"https://orcid.org/0000-0003-2011-8105"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tang, Zhengmi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5020830042","display_name":"Shinichiro Omachi","orcid":"https://orcid.org/0000-0001-7706-9995"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Omachi, Shinichiro","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.9946,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.9946,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12015","display_name":"Photoacoustic and Ultrasonic Imaging","score":0.9796,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13114","display_name":"Image Processing Techniques and Applications","score":0.9757,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/upsampling","display_name":"Upsampling","score":0.76094186}],"concepts":[{"id":"https://openalex.org/C110384440","wikidata":"https://www.wikidata.org/wiki/Q1143270","display_name":"Upsampling","level":3,"score":0.76094186},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7276501},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.68353087},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.6131936},{"id":"https://openalex.org/C16345878","wikidata":"https://www.wikidata.org/wiki/Q107472979","display_name":"Orientation (vector space)","level":2,"score":0.5289148},{"id":"https://openalex.org/C205372480","wikidata":"https://www.wikidata.org/wiki/Q210521","display_name":"Image resolution","level":2,"score":0.4340035},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.38424134},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.22450694},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.15511557},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.16455","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2312.16455","pdf_url":"http://arxiv.org/pdf/2312.16455","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2312.16455","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.16455","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4385574037","https://openalex.org/W4310746709","https://openalex.org/W3155117723","https://openalex.org/W3121005460","https://openalex.org/W3004135429","https://openalex.org/W2607795551","https://openalex.org/W2281134365","https://openalex.org/W2062399876","https://openalex.org/W1991429770","https://openalex.org/W1983892167"],"abstract_inverted_index":{"Background":[0],"and":[1,14,51,57,101,218],"objective:":[2],"High-resolution":[3],"radiographic":[4,65,152,231],"images":[5,66],"play":[6],"a":[7,46,61,78,109,128,143,197],"pivotal":[8],"role":[9],"in":[10,92,168],"the":[11,34,39,54,93,123,134,163,169,174,209,230],"early":[12],"diagnosis":[13],"treatment":[15],"of":[16],"skeletal":[17],"muscle-related":[18],"diseases.":[19],"It":[20],"is":[21,225],"promising":[22,226],"to":[23,95,98,102,114,188,227],"enhance":[24,96],"image":[25,36,41,204,232],"quality":[26],"by":[27,118,213],"introducing":[28,214],"single-image":[29],"super-resolution":[30,205],"(SISR)":[31],"model":[32],"into":[33],"radiology":[35],"field.":[37,234],"However,":[38],"conventional":[40],"pipeline,":[42],"which":[43,207],"can":[44],"learn":[45],"mixed":[47],"mapping":[48,100],"between":[49],"SR":[50],"denoising":[52,99],"from":[53],"color":[55],"space":[56],"inter-pixel":[58],"patterns,":[59],"poses":[60],"particular":[62],"challenge":[63],"for":[64,133,151,202],"with":[67,122,173],"limited":[68],"pattern":[69],"features.":[70],"To":[71],"address":[72],"this":[73,75,193],"issue,":[74],"paper":[76],"introduces":[77],"novel":[79,198],"approach:":[80],"Orientation":[81],"Operator":[82],"Transformer":[83],"-":[84],"$O^{2}$former.":[85],"Methods:":[86],"We":[87],"incorporate":[88],"an":[89,215],"orientation":[90,104,216],"operator":[91,217],"encoder":[94],"sensitivity":[97],"integrate":[103],"prior.":[105],"Furthermore,":[106],"we":[107,141,195],"propose":[108,142,196],"multi-scale":[110,219],"feature":[111,220],"fusion":[112,221],"strategy":[113],"amalgamate":[115],"features":[116],"captured":[117],"different":[119],"receptive":[120],"fields":[121],"directional":[124],"prior,":[125],"thereby":[126],"providing":[127],"more":[129,183],"effective":[130],"latent":[131],"representation":[132],"decoder.":[135],"Based":[136],"on":[137],"these":[138],"innovative":[139],"components,":[140],"transformer-based":[144],"SISR":[145],"model,":[146],"i.e.,":[147],"$O^{2}$former,":[148],"specifically":[149],"designed":[150],"images.":[153],"Results:":[154],"The":[155],"experimental":[156],"results":[157],"demonstrate":[158],"that":[159],"our":[160],"method":[161],"achieves":[162],"best":[164],"or":[165],"second-best":[166],"performance":[167,212],"objective":[170,184],"metrics":[171],"compared":[172],"competitors":[175],"at":[176],"$\\times":[177],"4$":[178],"upsampling":[179],"factor.":[180],"For":[181],"qualitative,":[182],"details":[185],"are":[186],"observed":[187],"be":[189],"recovered.":[190],"Conclusions:":[191],"In":[192],"study,":[194],"framework":[199],"called":[200],"$O^{2}$former":[201],"radiological":[203],"tasks,":[206],"improves":[208],"reconstruction":[210],"model's":[211],"strategy.":[222],"Our":[223],"approach":[224],"further":[228],"promote":[229],"enhancement":[233]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4390437248","counts_by_year":[],"updated_date":"2025-01-02T01:31:05.491576","created_date":"2023-12-30"}