{"id":"https://openalex.org/W4390214822","doi":"https://doi.org/10.48550/arxiv.2312.14568","title":"The Projection Method: a Unified Formalism for Community Detection","display_name":"The Projection Method: a Unified Formalism for Community Detection","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4390214822","doi":"https://doi.org/10.48550/arxiv.2312.14568"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.14568","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2312.14568","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5018046742","display_name":"Martijn G\u00f6sgens","orcid":"https://orcid.org/0000-0002-7197-7682"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"G\u00f6sgens, Martijn","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5034587660","display_name":"Remco van der Hofstad","orcid":"https://orcid.org/0000-0003-1331-9697"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"van der Hofstad, Remco","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5087671143","display_name":"Nelly Litvak","orcid":"https://orcid.org/0000-0002-6750-3484"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Litvak, Nelly","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10064","display_name":"Complex Network Analysis Techniques","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10064","display_name":"Complex Network Analysis Techniques","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10637","display_name":"Advanced Clustering Algorithms Research","score":0.9881,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10799","display_name":"Data Visualization and Analytics","score":0.9682,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/granularity","display_name":"Granularity","score":0.51381356},{"id":"https://openalex.org/keywords/hypersphere","display_name":"Hypersphere","score":0.45282704}],"concepts":[{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.69948816},{"id":"https://openalex.org/C57493831","wikidata":"https://www.wikidata.org/wiki/Q3134666","display_name":"Projection (relational algebra)","level":2,"score":0.54965997},{"id":"https://openalex.org/C177774035","wikidata":"https://www.wikidata.org/wiki/Q1246948","display_name":"Granularity","level":2,"score":0.51381356},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.4696364},{"id":"https://openalex.org/C2776562905","wikidata":"https://www.wikidata.org/wiki/Q306610","display_name":"Hypersphere","level":2,"score":0.45282704},{"id":"https://openalex.org/C42812","wikidata":"https://www.wikidata.org/wiki/Q1082910","display_name":"Partition (number theory)","level":2,"score":0.43694907},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.42821285},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4168043},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3869311},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.25353038},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.14568","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2312.14568","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.14568","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W2387846155","https://openalex.org/W2383090288","https://openalex.org/W2370730867","https://openalex.org/W2133653616","https://openalex.org/W2128638617","https://openalex.org/W2099702253","https://openalex.org/W2069017679","https://openalex.org/W2059484267","https://openalex.org/W1970780628","https://openalex.org/W1081706099"],"abstract_inverted_index":{"We":[0,98,178],"present":[1],"the":[2,46,51,60,64,70,83,86,90,94,105,135,151,160,163,173],"class":[3],"of":[4,72,96,107,119,127,162,172,203],"projection":[5,38,77,136,194,212],"methods":[6,129,148],"for":[7,125,214],"community":[8,14,33,206,222],"detection":[9,15,34,223],"that":[10,100,123,145,158,225],"generalizes":[11],"many":[12],"popular":[13],"methods.":[16],"In":[17,141],"this":[18,115,120,185,215,229],"framework,":[19],"we":[20,143,197,208],"represent":[21],"each":[22,126],"clustering":[23,73,91,113],"(partition)":[24],"by":[25,45,81],"a":[26,29,37,56,180,201,211,221],"vector":[27,58,66,88],"on":[28,59,69,228],"high-dimensional":[30],"hypersphere.":[31],"A":[32,117],"method":[35,39,213,224],"is":[36,53,67,79,122,176],"if":[40],"it":[41],"can":[42,130,189,209],"be":[43,131,190],"described":[44],"following":[47],"two-step":[48],"approach:":[49],"1)":[50],"graph":[52],"mapped":[54],"to":[55,133,169,183,192,219],"query":[57,65,87],"hypersphere;":[61],"and":[62,89,111],"2)":[63],"projected":[68],"set":[71,95],"vectors.":[74],"This":[75],"last":[76],"step":[78,137],"performed":[80],"minimizing":[82],"distance":[84],"between":[85],"vector,":[92],"over":[93],"clusterings.":[97],"prove":[99],"optimizing":[101],"Markov":[102],"stability,":[103],"modularity,":[104],"likelihood":[106],"planted":[108],"partition":[109],"models":[110],"correlation":[112],"fit":[114],"framework.":[116,140],"consequence":[118],"equivalence":[121],"algorithms":[124],"these":[128,146,168],"modified":[132],"perform":[134],"in":[138,217],"our":[139],"addition,":[142],"show":[144,198],"different":[147],"suffer":[149],"from":[150],"same":[152],"granularity":[153,161,175,186],"problem:":[154],"they":[155],"have":[156],"parameters":[157],"control":[159],"resulting":[164],"clustering,":[165],"but":[166],"choosing":[167],"obtain":[170,220],"clusterings":[171],"desired":[174],"nontrivial.":[177],"provide":[179],"general":[181],"heuristic":[182],"address":[184],"problem,":[187],"which":[188],"applied":[191],"any":[193],"method.":[195],"Finally,":[196],"how,":[199],"given":[200],"generator":[202,216],"graphs":[204],"with":[205],"structure,":[207],"optimize":[210],"order":[218],"performs":[226],"well":[227],"generator.":[230]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4390214822","counts_by_year":[],"updated_date":"2025-01-08T22:49:58.711263","created_date":"2023-12-26"}