{"id":"https://openalex.org/W4390092745","doi":"https://doi.org/10.48550/arxiv.2312.13131","title":"Scaling Compute Is Not All You Need for Adversarial Robustness","display_name":"Scaling Compute Is Not All You Need for Adversarial Robustness","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4390092745","doi":"https://doi.org/10.48550/arxiv.2312.13131"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.13131","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2312.13131","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5003889714","display_name":"Edoardo Debenedetti","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Debenedetti, Edoardo","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076856438","display_name":"Zishen Wan","orcid":"https://orcid.org/0000-0002-2982-5351"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wan, Zishen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5057136518","display_name":"Maksym Andriushchenko","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Andriushchenko, Maksym","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5011437254","display_name":"Vikash Sehwag","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sehwag, Vikash","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072298152","display_name":"Kshitij Bhardwaj","orcid":"https://orcid.org/0000-0001-7076-9251"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bhardwaj, Kshitij","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5041470575","display_name":"Bhavya Kailkhura","orcid":"https://orcid.org/0000-0002-2819-2919"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kailkhura, Bhavya","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.778623,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":67,"max":78},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T14117","display_name":"Integrated Circuits and Semiconductor Failure Analysis","score":0.9686,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9453,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.84625375},{"id":"https://openalex.org/keywords/benchmarking","display_name":"Benchmarking","score":0.82874584},{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep Neural Networks","score":0.518419},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.48299277},{"id":"https://openalex.org/keywords/scaling-law","display_name":"Scaling law","score":0.43873775}],"concepts":[{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.8916292},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.84625375},{"id":"https://openalex.org/C86251818","wikidata":"https://www.wikidata.org/wiki/Q816754","display_name":"Benchmarking","level":2,"score":0.82874584},{"id":"https://openalex.org/C99844830","wikidata":"https://www.wikidata.org/wiki/Q102441924","display_name":"Scaling","level":2,"score":0.66328335},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6465058},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.518419},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.48299277},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.48018208},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.45880145},{"id":"https://openalex.org/C2988430800","wikidata":"https://www.wikidata.org/wiki/Q428971","display_name":"Scaling law","level":3,"score":0.43873775},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.39598903},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.39127442},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.21010128},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.087162346},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.13131","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2312.13131","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.13131","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.52,"display_name":"Industry, innovation and infrastructure","id":"https://metadata.un.org/sdg/9"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4383221314","https://openalex.org/W4313346231","https://openalex.org/W4285785480","https://openalex.org/W3203790781","https://openalex.org/W3093978547","https://openalex.org/W3080754722","https://openalex.org/W2997056298","https://openalex.org/W2953536436","https://openalex.org/W2950183588","https://openalex.org/W2738001131"],"abstract_inverted_index":{"The":[0],"last":[1],"six":[2],"years":[3],"have":[4],"witnessed":[5],"significant":[6,65],"progress":[7],"in":[8,20,32,36,100,145,174,187,207],"adversarially":[9,59],"robust":[10,169,209],"deep":[11,210],"learning.":[12,211],"As":[13],"evidenced":[14],"by":[15,61],"the":[16,23,101,127,156,175],"CIFAR-10":[17],"dataset":[18],"category":[19],"RobustBench":[21],"benchmark,":[22],"accuracy":[24],"under":[25],"$\\ell_\\infty$":[26],"adversarial":[27,82,94,131],"perturbations":[28],"improved":[29],"from":[30,45],"44\\%":[31],"\\citet{Madry2018Towards}":[33],"to":[34,73,103,114,116,161,185,203],"71\\%":[35],"\\citet{peng2023robust}.":[37],"Although":[38],"impressive,":[39],"existing":[40],"state-of-the-art":[41],"is":[42,48],"still":[43],"far":[44],"satisfactory.":[46],"It":[47],"further":[49],"observed":[50],"that":[51,125,153,165],"best-performing":[52],"models":[53,58],"are":[54,159,167],"often":[55],"very":[56],"large":[57],"trained":[60],"industrial":[62],"labs":[63],"with":[64],"computational":[66],"budgets.":[67],"In":[68],"this":[69,87],"paper,":[70],"we":[71,89,111,151,191],"aim":[72],"understand:":[74],"``how":[75],"much":[76,109,137],"longer":[77],"can":[78,97],"computing":[79],"power":[80],"drive":[81],"robustness":[83],"advances?\"":[84],"To":[85],"answer":[86],"question,":[88],"derive":[90],"\\emph{scaling":[91],"laws":[92],"for":[93,130,142,171],"robustness}":[95],"which":[96],"be":[98],"extrapolated":[99],"future":[102,188,205],"provide":[104],"an":[105],"estimate":[106],"of":[107,121,147,155,199],"how":[108],"cost":[110],"would":[112],"need":[113],"pay":[115],"reach":[117],"a":[118],"desired":[119],"level":[120],"robustness.":[122],"We":[123],"show":[124],"increasing":[126],"FLOPs":[128],"needed":[129],"training":[132,144,176],"does":[133,141],"not":[134,168],"bring":[135],"as":[136,139],"advantage":[138],"it":[140],"standard":[143],"terms":[146],"performance":[148],"improvements.":[149],"Moreover,":[150],"find":[152],"some":[154],"top-performing":[157],"techniques":[158],"difficult":[160],"exactly":[162],"reproduce,":[163],"suggesting":[164],"they":[166],"enough":[170],"minor":[172],"changes":[173],"setup.":[177],"Our":[178],"analysis":[179,206],"also":[180],"uncovers":[181],"potentially":[182],"worthwhile":[183],"directions":[184],"pursue":[186],"research.":[189],"Finally,":[190],"make":[192],"our":[193],"benchmarking":[194],"framework":[195],"(built":[196],"on":[197],"top":[198],"\\texttt{timm}~\\citep{rw2019timm})":[200],"publicly":[201],"available":[202],"facilitate":[204],"efficient":[208]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4390092745","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-01-03T09:14:00.952191","created_date":"2023-12-22"}