{"id":"https://openalex.org/W4389983037","doi":"https://doi.org/10.48550/arxiv.2312.10469","title":"One step closer to unbiased aleatoric uncertainty estimation","display_name":"One step closer to unbiased aleatoric uncertainty estimation","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4389983037","doi":"https://doi.org/10.48550/arxiv.2312.10469"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.10469","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2312.10469","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100329305","display_name":"Wang Zhang","orcid":"https://orcid.org/0000-0001-7921-9010"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Wang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100521909","display_name":"Ziwen Ma","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ma, Ziwen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5011183160","display_name":"Subhro Das","orcid":"https://orcid.org/0000-0002-7610-2738"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Das, Subhro","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5114139431","display_name":"Tsui-Wei Weng","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Weng, Tsui-Wei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5108208983","display_name":"Alexandre Megretski","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Megretski, Alexandre","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021651870","display_name":"Luca Daniel","orcid":"https://orcid.org/0000-0002-5880-3151"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Daniel, Luca","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5049043092","display_name":"Lam M. Nguyen","orcid":"https://orcid.org/0000-0001-6083-606X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Nguyen, Lam M.","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9955,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11206","display_name":"Model Reduction and Neural Networks","score":0.9915,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/uncertainty-quantification","display_name":"Uncertainty Quantification","score":0.686313},{"id":"https://openalex.org/keywords/point-estimation","display_name":"Point estimation","score":0.5166017}],"concepts":[{"id":"https://openalex.org/C32230216","wikidata":"https://www.wikidata.org/wiki/Q7882499","display_name":"Uncertainty quantification","level":2,"score":0.686313},{"id":"https://openalex.org/C196083921","wikidata":"https://www.wikidata.org/wiki/Q7915758","display_name":"Variance (accounting)","level":2,"score":0.6100545},{"id":"https://openalex.org/C204323151","wikidata":"https://www.wikidata.org/wiki/Q905424","display_name":"Range (aeronautics)","level":2,"score":0.60574234},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5802752},{"id":"https://openalex.org/C41426520","wikidata":"https://www.wikidata.org/wiki/Q1192065","display_name":"Point estimation","level":2,"score":0.5166017},{"id":"https://openalex.org/C28719098","wikidata":"https://www.wikidata.org/wiki/Q44946","display_name":"Point (geometry)","level":2,"score":0.47913334},{"id":"https://openalex.org/C137209882","wikidata":"https://www.wikidata.org/wiki/Q1403517","display_name":"Measurement uncertainty","level":2,"score":0.44611153},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.4439526},{"id":"https://openalex.org/C96250715","wikidata":"https://www.wikidata.org/wiki/Q965330","display_name":"Estimation","level":2,"score":0.44329467},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.43496048},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.41179883},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.34141955},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.33039987},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.18666646},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.18326178},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.11465591},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.084400505},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C121955636","wikidata":"https://www.wikidata.org/wiki/Q4116214","display_name":"Accounting","level":1,"score":0.0},{"id":"https://openalex.org/C201995342","wikidata":"https://www.wikidata.org/wiki/Q682496","display_name":"Systems engineering","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.10469","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2312.10469","pdf_url":"http://arxiv.org/pdf/2312.10469","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2312.10469","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.10469","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.75,"id":"https://metadata.un.org/sdg/16","display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4388321721","https://openalex.org/W4386940959","https://openalex.org/W3196464345","https://openalex.org/W3127311823","https://openalex.org/W2576994247","https://openalex.org/W2490743626","https://openalex.org/W2170798819","https://openalex.org/W2078622645","https://openalex.org/W1991093342","https://openalex.org/W1541812322"],"abstract_inverted_index":{"Neural":[0],"networks":[1],"are":[2,24],"powerful":[3],"tools":[4],"in":[5],"various":[6],"applications,":[7],"and":[8,30],"quantifying":[9],"their":[10],"uncertainty":[11,89],"is":[12],"crucial":[13],"for":[14],"reliable":[15],"decision-making.":[16],"In":[17,34],"the":[18,22,41,64,86,91],"deep":[19],"learning":[20],"field,":[21],"uncertainties":[23],"usually":[25],"categorized":[26],"into":[27],"aleatoric":[28,49],"(data)":[29],"epistemic":[31],"(model)":[32],"uncertainty.":[33,50],"this":[35,53],"paper,":[36],"we":[37,55,74],"point":[38],"out":[39],"that":[40,76],"existing":[42],"popular":[43],"variance":[44],"attenuation":[45],"method":[46,60],"highly":[47],"overestimates":[48],"To":[51],"address":[52],"issue,":[54],"propose":[56],"a":[57,69,81],"new":[58],"estimation":[59],"by":[61],"actively":[62],"de-noising":[63],"observed":[65],"data.":[66],"By":[67],"conducting":[68],"broad":[70],"range":[71],"of":[72],"experiments,":[73],"demonstrate":[75],"our":[77],"proposed":[78],"approach":[79],"provides":[80],"much":[82],"closer":[83],"approximation":[84],"to":[85],"actual":[87],"data":[88],"than":[90],"standard":[92],"method.":[93]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4389983037","counts_by_year":[],"updated_date":"2025-01-04T13:47:45.924463","created_date":"2023-12-20"}