{"id":"https://openalex.org/W4389910747","doi":"https://doi.org/10.48550/arxiv.2312.09486","title":"Unraveling Batch Normalization for Realistic Test-Time Adaptation","display_name":"Unraveling Batch Normalization for Realistic Test-Time Adaptation","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4389910747","doi":"https://doi.org/10.48550/arxiv.2312.09486"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.09486","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2312.09486","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5005421577","display_name":"Zixian Su","orcid":"https://orcid.org/0000-0002-1750-1501"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Su, Zixian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5013231544","display_name":"Jingwei Guo","orcid":"https://orcid.org/0000-0003-4336-9863"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Guo, Jingwei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047420717","display_name":"Kai Yao","orcid":"https://orcid.org/0000-0003-4623-0365"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yao, Kai","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100355611","display_name":"Xi Yang","orcid":"https://orcid.org/0009-0007-4874-7831"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Xi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101764074","display_name":"Qiufeng Wang","orcid":"https://orcid.org/0000-0001-7680-6607"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Qiufeng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5026022035","display_name":"Kaizhu Huang","orcid":"https://orcid.org/0000-0002-3034-9639"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Huang, Kaizhu","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":65},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9778,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9778,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9577,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9546,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/normalization","display_name":"Normalization","score":0.7651831},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.44939077},{"id":"https://openalex.org/keywords/batch-processing","display_name":"Batch processing","score":0.41323805}],"concepts":[{"id":"https://openalex.org/C136886441","wikidata":"https://www.wikidata.org/wiki/Q926129","display_name":"Normalization (sociology)","level":2,"score":0.7651831},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7515714},{"id":"https://openalex.org/C75235859","wikidata":"https://www.wikidata.org/wiki/Q582659","display_name":"Exponential growth","level":2,"score":0.49404648},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.44939077},{"id":"https://openalex.org/C172658912","wikidata":"https://www.wikidata.org/wiki/Q661613","display_name":"Batch processing","level":2,"score":0.41323805},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.39170426},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.38591108},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.34768158},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.15139157},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C19165224","wikidata":"https://www.wikidata.org/wiki/Q23404","display_name":"Anthropology","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.09486","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2312.09486","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.09486","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4321441197","https://openalex.org/W4294432981","https://openalex.org/W3011538607","https://openalex.org/W2953716828","https://openalex.org/W2944728705","https://openalex.org/W2904022177","https://openalex.org/W2591697403","https://openalex.org/W2469820710","https://openalex.org/W2359348847","https://openalex.org/W2152642030"],"abstract_inverted_index":{"While":[0],"recent":[1],"test-time":[2,48,152],"adaptations":[3],"exhibit":[4],"efficacy":[5],"by":[6],"adjusting":[7],"batch":[8,63,120,191],"normalization":[9],"to":[10,21,32,96,121,149],"narrow":[11],"domain":[12,49],"disparities,":[13],"their":[14],"effectiveness":[15],"diminishes":[16],"with":[17,189],"realistic":[18],"mini-batches":[19],"due":[20],"inaccurate":[22,40],"target":[23,41,70,135],"estimation.":[24,136],"As":[25],"previous":[26],"attempts":[27],"merely":[28],"introduce":[29,87],"source":[30],"statistics":[31,71],"mitigate":[33],"this":[34,84,139],"issue,":[35],"the":[36,46,56,68,75,98,112,118],"fundamental":[37],"problem":[38,57],"of":[39,58,114,126],"estimation":[42],"still":[43],"persists,":[44],"leaving":[45],"intrinsic":[47],"shifts":[50],"unresolved.":[51],"This":[52],"paper":[53],"delves":[54],"into":[55],"mini-batch":[59],"degradation.":[60],"By":[61],"unraveling":[62],"normalization,":[64],"we":[65,86,141],"discover":[66],"that":[67],"inexact":[69],"largely":[72],"stem":[73],"from":[74],"substantially":[76],"reduced":[77],"class":[78,99,127],"diversity":[79,100],"in":[80,130,185],"batch.":[81],"Drawing":[82],"upon":[83,138],"insight,":[85],"a":[88,123,144,158,170],"straightforward":[89],"tool,":[90],"Test-time":[91],"Exponential":[92],"Moving":[93],"Average":[94],"(TEMA),":[95],"bridge":[97],"gap":[101],"between":[102],"training":[103,165],"and":[104,182],"testing":[105],"batches.":[106],"Importantly,":[107],"our":[108],"TEMA":[109],"adaptively":[110],"extends":[111],"scope":[113],"typical":[115],"methods":[116],"beyond":[117],"current":[119],"incorporate":[122],"diverse":[124,186],"set":[125],"information,":[128],"which":[129],"turn":[131],"boosts":[132],"an":[133],"accurate":[134],"Built":[137],"foundation,":[140],"further":[142],"design":[143],"novel":[145],"layer-wise":[146],"rectification":[147],"strategy":[148],"consistently":[150],"promote":[151],"performance.":[153],"Our":[154],"proposed":[155],"method":[156],"enjoys":[157],"unique":[159],"advantage":[160],"as":[161],"it":[162],"requires":[163],"neither":[164],"nor":[166],"tuning":[167],"parameters,":[168],"offering":[169],"truly":[171],"hassle-free":[172],"solution.":[173],"It":[174],"significantly":[175],"enhances":[176],"model":[177],"robustness":[178],"against":[179],"shifted":[180],"domains":[181],"maintains":[183],"resilience":[184],"real-world":[187],"scenarios":[188],"various":[190],"sizes,":[192],"achieving":[193],"state-of-the-art":[194],"performance":[195],"on":[196],"several":[197],"major":[198],"benchmarks.":[199],"Code":[200],"is":[201],"available":[202],"at":[203],"\\url{https://github.com/kiwi12138/RealisticTTA}.":[204]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4389910747","counts_by_year":[],"updated_date":"2025-04-09T00:09:44.712336","created_date":"2023-12-19"}