{"id":"https://openalex.org/W4389814591","doi":"https://doi.org/10.48550/arxiv.2312.08650","title":"PhyOT: Physics-informed object tracking in surveillance cameras","display_name":"PhyOT: Physics-informed object tracking in surveillance cameras","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4389814591","doi":"https://doi.org/10.48550/arxiv.2312.08650"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.08650","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2312.08650","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5057278317","display_name":"Kawisorn Kamtue","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kamtue, Kawisorn","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045861415","display_name":"Jos\u00e9 M. F. Moura","orcid":"https://orcid.org/0000-0002-9822-8294"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Moura, Jose M. F.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076498926","display_name":"Orathai Sangpetch","orcid":"https://orcid.org/0000-0001-8417-825X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sangpetch, Orathai","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5019083374","display_name":"Paulo Alonso Gaona-Garc\u00eda","orcid":"https://orcid.org/0000-0002-8758-1412"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Garcia, Paulo","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9972,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12153","display_name":"Advanced Optical Sensing Technologies","score":0.9967,"subfield":{"id":"https://openalex.org/subfields/3105","display_name":"Instrumentation"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.6706889},{"id":"https://openalex.org/keywords/heuristics","display_name":"Heuristics","score":0.6082737},{"id":"https://openalex.org/keywords/motion-blur","display_name":"Motion blur","score":0.48577335},{"id":"https://openalex.org/keywords/tracking","display_name":"Tracking (education)","score":0.46923}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.76428515},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.74465525},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.6706889},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.63326716},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.6096858},{"id":"https://openalex.org/C127705205","wikidata":"https://www.wikidata.org/wiki/Q5748245","display_name":"Heuristics","level":2,"score":0.6082737},{"id":"https://openalex.org/C132094186","wikidata":"https://www.wikidata.org/wiki/Q641585","display_name":"Clutter","level":3,"score":0.53692925},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.53353465},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.50638664},{"id":"https://openalex.org/C2777708103","wikidata":"https://www.wikidata.org/wiki/Q852589","display_name":"Motion blur","level":3,"score":0.48577335},{"id":"https://openalex.org/C157286648","wikidata":"https://www.wikidata.org/wiki/Q846780","display_name":"Kalman filter","level":2,"score":0.4835172},{"id":"https://openalex.org/C2775936607","wikidata":"https://www.wikidata.org/wiki/Q466845","display_name":"Tracking (education)","level":2,"score":0.46923},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.46179107},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.45881018},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.25626487},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.16587621},{"id":"https://openalex.org/C554190296","wikidata":"https://www.wikidata.org/wiki/Q47528","display_name":"Radar","level":2,"score":0.12867785},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C19417346","wikidata":"https://www.wikidata.org/wiki/Q7922","display_name":"Pedagogy","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.08650","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2312.08650","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.08650","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W3036468168","https://openalex.org/W2333771223","https://openalex.org/W2130674020","https://openalex.org/W2120056845","https://openalex.org/W2093748878","https://openalex.org/W2035264131","https://openalex.org/W1981531423","https://openalex.org/W1925461966","https://openalex.org/W1679012645","https://openalex.org/W1496493270"],"abstract_inverted_index":{"While":[0],"deep":[1,45,72,157,175],"learning":[2,46,176],"has":[3,30],"been":[4],"very":[5],"successful":[6],"in":[7,77,85,151,164],"computer":[8,49],"vision,":[9],"real":[10],"world":[11],"operating":[12],"conditions":[13,153],"such":[14,52,120],"as":[15,53,75],"lighting":[16],"variation,":[17],"background":[18],"clutter,":[19],"or":[20,55],"occlusion":[21],"hinder":[22],"its":[23,162],"accuracy":[24],"across":[25],"several":[26,48],"tasks.":[27],"Prior":[28],"work":[29],"shown":[31],"that":[32,70,132,145,154,172,181],"hybrid":[33,67],"models":[34],"--":[35,41],"combining":[36],"neural":[37,73,108,158],"networks":[38,74,159],"and":[39,64,99,114,118,135,137,187],"heuristics/algorithms":[40],"can":[42,148],"outperform":[43],"vanilla":[44],"for":[47],"vision":[50],"tasks,":[51],"classification":[54],"tracking.":[56],"We":[57],"consider":[58],"the":[59,86,155],"case":[60],"of":[61,88,91,173],"object":[62],"tracking,":[63],"evaluate":[65,119],"a":[66,78,121,127,138],"model":[68],"(PhyOT)":[69],"conceptualizes":[71],"``sensors''":[76],"Kalman":[79],"filter":[80],"setup,":[81],"where":[82],"prior":[83],"knowledge,":[84],"form":[87],"Newtonian":[89],"laws":[90],"motion,":[92],"is":[93],"used":[94],"to":[95,100],"fuse":[96],"sensor":[97],"observations":[98],"perform":[101],"improved":[102],"estimations.":[103],"Our":[104],"experiments":[105],"combine":[106],"three":[107],"networks,":[109],"performing":[110],"position,":[111],"indirect":[112],"velocity":[113],"acceleration":[115],"estimation,":[116],"respectively,":[117],"formulation":[122],"on":[123],"two":[124],"benchmark":[125],"datasets:":[126],"warehouse":[128],"security":[129],"camera":[130,140],"dataset":[131],"we":[133],"collected":[134],"annotated":[136],"traffic":[139],"open":[141],"dataset.":[142],"Results":[143,178],"suggest":[144,180],"our":[146,182],"PhyOT":[147,183],"track":[149],"objects":[150],"extreme":[152],"state-of-the-art":[156],"fail":[160],"while":[161],"performance":[163],"general":[165],"cases":[166],"does":[167],"not":[168],"degrade":[169],"significantly":[170],"from":[171],"existing":[174],"approaches.":[177],"also":[179],"components":[184],"are":[185],"generalizable":[186],"transferable.":[188]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4389814591","counts_by_year":[],"updated_date":"2025-01-04T17:51:43.796137","created_date":"2023-12-16"}