{"id":"https://openalex.org/W4389768551","doi":"https://doi.org/10.48550/arxiv.2312.08060","title":"C-BEV: Contrastive Bird's Eye View Training for Cross-View Image Retrieval and 3-DoF Pose Estimation","display_name":"C-BEV: Contrastive Bird's Eye View Training for Cross-View Image Retrieval and 3-DoF Pose Estimation","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4389768551","doi":"https://doi.org/10.48550/arxiv.2312.08060"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.08060","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2312.08060","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5017142369","display_name":"Florian Fervers","orcid":"https://orcid.org/0000-0002-1263-0355"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fervers, Florian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5069250418","display_name":"Sebastian Bullinger","orcid":"https://orcid.org/0000-0002-1584-5319"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bullinger, Sebastian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5008037781","display_name":"Christoph Bodensteiner","orcid":"https://orcid.org/0000-0002-5563-3484"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Bodensteiner, Christoph","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5000041406","display_name":"Michael Arens","orcid":"https://orcid.org/0000-0002-7857-0332"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Arens, Michael","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5087051920","display_name":"Rainer Stiefelhagen","orcid":"https://orcid.org/0000-0001-8046-4945"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Stiefelhagen, Rainer","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.700164,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":82},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10191","display_name":"Robotics and Sensor-Based Localization","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/geolocation","display_name":"Geolocation","score":0.7098222},{"id":"https://openalex.org/keywords/aerial-image","display_name":"Aerial image","score":0.47649282},{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.43634853},{"id":"https://openalex.org/keywords/margin","display_name":"Margin (machine learning)","score":0.41496298}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7639028},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7235571},{"id":"https://openalex.org/C22041718","wikidata":"https://www.wikidata.org/wiki/Q638949","display_name":"Geolocation","level":2,"score":0.7098222},{"id":"https://openalex.org/C16345878","wikidata":"https://www.wikidata.org/wiki/Q107472979","display_name":"Orientation (vector space)","level":2,"score":0.6356411},{"id":"https://openalex.org/C1667742","wikidata":"https://www.wikidata.org/wiki/Q10927554","display_name":"Image retrieval","level":3,"score":0.60103863},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.56991297},{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.5119091},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.48393708},{"id":"https://openalex.org/C2776429412","wikidata":"https://www.wikidata.org/wiki/Q4688011","display_name":"Aerial image","level":3,"score":0.47649282},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.4415813},{"id":"https://openalex.org/C81669768","wikidata":"https://www.wikidata.org/wiki/Q2359161","display_name":"Precision and recall","level":2,"score":0.43973818},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.43634853},{"id":"https://openalex.org/C149364088","wikidata":"https://www.wikidata.org/wiki/Q185917","display_name":"Translation (biology)","level":4,"score":0.427949},{"id":"https://openalex.org/C774472","wikidata":"https://www.wikidata.org/wiki/Q6760393","display_name":"Margin (machine learning)","level":2,"score":0.41496298},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.38916197},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.15042207},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.14314055},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C105580179","wikidata":"https://www.wikidata.org/wiki/Q188928","display_name":"Messenger RNA","level":3,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.08060","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2312.08060","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.08060","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.82,"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4381744813","https://openalex.org/W4313580724","https://openalex.org/W4238243837","https://openalex.org/W3156724800","https://openalex.org/W3119811191","https://openalex.org/W3022930353","https://openalex.org/W2997522288","https://openalex.org/W2031656597","https://openalex.org/W2004030635","https://openalex.org/W1572370569"],"abstract_inverted_index":{"To":[0],"find":[1],"the":[2,25,28,67,94,108,121,124,144,159,177,182],"geolocation":[3],"of":[4,19],"a":[5,17,73,131,165,189],"street-view":[6,40],"image,":[7,185],"cross-view":[8],"geolocalization":[9],"(CVGL)":[10],"methods":[11,196],"typically":[12],"perform":[13],"image":[14,170],"retrieval":[15,76,104,125],"on":[16,37,123,127,147,169,181],"database":[18],"georeferenced":[20],"aerial":[21,42,69,184],"images":[22,43],"and":[23,41,91,112,186],"determine":[24],"location":[26],"from":[27,154],"visually":[29],"most":[30],"similar":[31],"match.":[32],"Recent":[33],"approaches":[34],"focus":[35],"mainly":[36],"settings":[38],"where":[39,58],"are":[44,198],"preselected":[45],"to":[46,63,66,156,175],"align":[47],"w.r.t.":[48],"translation":[49],"or":[50],"orientation,":[51],"but":[52],"struggle":[53],"in":[54,99,138],"challenging":[55,139],"real-world":[56,100],"scenarios":[57],"varying":[59],"camera":[60,179],"poses":[61],"have":[62],"be":[64],"matched":[65],"same":[68,109],"image.":[70],"We":[71],"propose":[72],"novel":[74],"trainable":[75],"architecture":[77],"that":[78,97,197],"uses":[79],"bird's":[80],"eye":[81],"view":[82],"(BEV)":[83],"maps":[84],"rather":[85],"than":[86,194],"vectors":[87],"as":[88,114],"embedding":[89],"representation,":[90],"explicitly":[92,199],"addresses":[93],"many-to-one":[95,140],"ambiguity":[96],"arises":[98],"scenarios.":[101],"The":[102],"BEV-based":[103],"is":[105,135,161],"trained":[106,200],"using":[107],"contrastive":[110,166],"setting":[111],"loss":[113],"classical":[115],"retrieval.":[116],"Our":[117],"method":[118],"C-BEV":[119],"surpasses":[120],"state-of-the-art":[122],"task":[126],"multiple":[128],"datasets":[129],"by":[130],"large":[132],"margin.":[133],"It":[134],"particularly":[136],"effective":[137],"scenarios,":[141],"e.g.":[142],"increasing":[143],"top-1":[145],"recall":[146],"VIGOR's":[148],"cross-area":[149],"split":[150],"with":[151,201],"unknown":[152],"orientation":[153],"31.1%":[155],"65.0%.":[157],"Although":[158],"model":[160],"supervised":[162],"only":[163],"through":[164],"objective":[167],"applied":[168],"pairings,":[171],"it":[172],"additionally":[173],"learns":[174],"infer":[176],"3-DoF":[178],"pose":[180,192],"matching":[183],"even":[187],"yields":[188],"lower":[190],"mean":[191],"error":[193],"recent":[195],"metric":[202],"groundtruth.":[203]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4389768551","counts_by_year":[{"year":2025,"cited_by_count":2}],"updated_date":"2025-04-24T01:19:52.359661","created_date":"2023-12-15"}