{"id":"https://openalex.org/W4389650650","doi":"https://doi.org/10.48550/arxiv.2312.05767","title":"AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model","display_name":"AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4389650650","doi":"https://doi.org/10.48550/arxiv.2312.05767"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.05767","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2312.05767","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5042835723","display_name":"Teng Hu","orcid":"https://orcid.org/0000-0002-8624-0210"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hu, Teng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021861529","display_name":"Jiangning Zhang","orcid":"https://orcid.org/0000-0001-8891-6766"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Jiangning","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5054879013","display_name":"Ran Yi","orcid":"https://orcid.org/0000-0003-1858-3358"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yi, Ran","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101551627","display_name":"Yuzhen Du","orcid":"https://orcid.org/0000-0002-1539-4247"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Du, Yuzhen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100604133","display_name":"Xu Chen","orcid":"https://orcid.org/0000-0002-4200-2253"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chen, Xu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100322345","display_name":"Liang Liu","orcid":"https://orcid.org/0000-0001-9491-8821"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Liang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028731909","display_name":"Yabiao Wang","orcid":"https://orcid.org/0000-0002-6592-8411"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Yabiao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5023834700","display_name":"Chengjie Wang","orcid":"https://orcid.org/0000-0003-4216-8090"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Chengjie","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.712026,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":78,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.972,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9669,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/anomaly","display_name":"Anomaly (physics)","score":0.82529444}],"concepts":[{"id":"https://openalex.org/C12997251","wikidata":"https://www.wikidata.org/wiki/Q567560","display_name":"Anomaly (physics)","level":2,"score":0.82529444},{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.72604585},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6429211},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.45680493},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.45431328},{"id":"https://openalex.org/C183115368","wikidata":"https://www.wikidata.org/wiki/Q856577","display_name":"Weighting","level":2,"score":0.41326487},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.39738107},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0984101},{"id":"https://openalex.org/C24890656","wikidata":"https://www.wikidata.org/wiki/Q82811","display_name":"Acoustics","level":1,"score":0.0},{"id":"https://openalex.org/C26873012","wikidata":"https://www.wikidata.org/wiki/Q214781","display_name":"Condensed matter physics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.05767","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2312.05767","pdf_url":"http://arxiv.org/pdf/2312.05767","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2312.05767","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.05767","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.41,"id":"https://metadata.un.org/sdg/1","display_name":"No poverty"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4377864969","https://openalex.org/W4300558037","https://openalex.org/W4290647774","https://openalex.org/W3210364259","https://openalex.org/W3207797160","https://openalex.org/W3189286258","https://openalex.org/W2972971679","https://openalex.org/W2912112202","https://openalex.org/W2806741695","https://openalex.org/W2667207928"],"abstract_inverted_index":{"Anomaly":[0,93],"inspection":[1,11,201],"plays":[2],"an":[3,108],"important":[4],"role":[5],"in":[6,15,188,209],"industrial":[7],"manufacture.":[8],"Existing":[9],"anomaly":[10,21,24,33,63,100,109,113,116,132,149,200],"methods":[12,26,187],"are":[13,207],"limited":[14],"their":[16],"performance":[17,197],"due":[18],"to":[19,30,80,122,159],"insufficient":[20],"data.":[22,88],"Although":[23],"generation":[25,40,64,83,171,189],"have":[27],"been":[28],"proposed":[29],"augment":[31],"the":[32,46,53,68,82,112,124,127,131,144,147,157,163,185,196],"data,":[34],"they":[35],"either":[36],"suffer":[37],"from":[38,77,107],"poor":[39],"authenticity":[41,84,190],"or":[42],"inaccurate":[43],"alignment":[44,125],"between":[45,126,146],"generated":[47,128,148,168],"anomalies":[48,129],"and":[49,102,118,130,151,191,193,205],"masks.":[50],"To":[51],"address":[52],"above":[54],"problems,":[55],"we":[56,90,134],"propose":[57,91],"AnomalyDiffusion,":[58],"a":[59,98,103,136],"novel":[60,137],"diffusion-based":[61],"few-shot":[62,86],"model,":[65],"which":[66,95],"utilizes":[67],"strong":[69],"prior":[70],"information":[71,114],"of":[72,97,172,198],"latent":[73],"diffusion":[74],"model":[75,158,182],"learned":[76],"large-scale":[78],"dataset":[79],"enhance":[81],"under":[85],"training":[87],"Firstly,":[89],"Spatial":[92],"Embedding,":[94],"consists":[96],"learnable":[99],"embedding":[101,105],"spatial":[104],"encoded":[106],"mask,":[110],"disentangling":[111],"into":[115],"appearance":[117],"location":[119],"information.":[120],"Moreover,":[121],"improve":[123],"masks,":[133],"introduce":[135],"Adaptive":[138],"Attention":[139],"Re-weighting":[140],"Mechanism.":[141],"Based":[142],"on":[143,162],"disparities":[145],"image":[150],"normal":[152],"sample,":[153],"it":[154],"dynamically":[155],"guides":[156],"focus":[160],"more":[161],"areas":[164],"with":[165],"less":[166],"noticeable":[167],"anomalies,":[169],"enabling":[170],"accurately-matched":[173],"anomalous":[174],"image-mask":[175],"pairs.":[176],"Extensive":[177],"experiments":[178],"demonstrate":[179],"that":[180],"our":[181],"significantly":[183],"outperforms":[184],"state-of-the-art":[186],"diversity,":[192],"effectively":[194],"improves":[195],"downstream":[199],"tasks.":[202],"The":[203],"code":[204],"data":[206],"available":[208],"https://github.com/sjtuplayer/anomalydiffusion.":[210]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4389650650","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2025-01-19T05:14:08.937105","created_date":"2023-12-13"}