{"id":"https://openalex.org/W4389649731","doi":"https://doi.org/10.48550/arxiv.2312.05278","title":"Lyrics: Boosting Fine-grained Language-Vision Alignment and Comprehension via Semantic-aware Visual Objects","display_name":"Lyrics: Boosting Fine-grained Language-Vision Alignment and Comprehension via Semantic-aware Visual Objects","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4389649731","doi":"https://doi.org/10.48550/arxiv.2312.05278"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.05278","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2312.05278","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5102402775","display_name":"Junyu Lu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lu, Junyu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5108691724","display_name":"Ruyi Gan","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gan, Ruyi","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047880537","display_name":"Dixiang Zhang","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Dixiang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021767311","display_name":"Xiaojun Wu","orcid":"https://orcid.org/0000-0003-3606-1211"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wu, Xiaojun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101794936","display_name":"Ziwei Wu","orcid":"https://orcid.org/0000-0003-3999-4367"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wu, Ziwei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5111089828","display_name":"Renliang Sun","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sun, Renliang","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100628333","display_name":"Jiaxing Zhang","orcid":"https://orcid.org/0000-0002-1324-6486"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Jiaxing","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5048283341","display_name":"Pingjian Zhang","orcid":"https://orcid.org/0000-0002-9087-4494"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhang, Pingjian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100573313","display_name":"Yan Song","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Song, Yan","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.703406,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":87,"max":90},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9678,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9344,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/boosting","display_name":"Boosting","score":0.5082962}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8386582},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6157201},{"id":"https://openalex.org/C71139939","wikidata":"https://www.wikidata.org/wiki/Q910194","display_name":"Modal","level":2,"score":0.54746926},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.5203768},{"id":"https://openalex.org/C46686674","wikidata":"https://www.wikidata.org/wiki/Q466303","display_name":"Boosting (machine learning)","level":2,"score":0.5082962},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.43899256},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.39985308},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C188027245","wikidata":"https://www.wikidata.org/wiki/Q750446","display_name":"Polymer chemistry","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.05278","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2312.05278","pdf_url":"http://arxiv.org/pdf/2312.05278","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2312.05278","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.05278","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","display_name":"Quality education","score":0.78}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4239293476","https://openalex.org/W4231274751","https://openalex.org/W2556012038","https://openalex.org/W2154063878","https://openalex.org/W2125652721","https://openalex.org/W1566995892","https://openalex.org/W1549363203","https://openalex.org/W1540371141","https://openalex.org/W1538046993","https://openalex.org/W1489772951"],"abstract_inverted_index":{"Large":[0],"Vision":[1],"Language":[2],"Models":[3],"(LVLMs)":[4],"have":[5],"demonstrated":[6],"impressive":[7],"zero-shot":[8],"capabilities":[9,181],"in":[10,118,182],"various":[11,170],"vision-language":[12,56,131,171],"dialogue":[13,184],"scenarios.":[14,185],"However,":[15],"the":[16,24,28,64,89,94,97,101,108,120,124,135,150],"absence":[17],"of":[18,30,66],"fine-grained":[19,59],"visual":[20,35,71,76,109,142,158],"object":[21,82],"detection":[22,83],"hinders":[23],"model":[25,151],"from":[26,58,74,107,156],"understanding":[27,177],"details":[29],"images,":[31],"leading":[32],"to":[33,152],"irreparable":[34],"hallucinations":[36],"and":[37,50,84,104,129,173,178],"factual":[38],"errors.":[39],"In":[40],"this":[41],"paper,":[42],"we":[43,139],"propose":[44],"Lyrics,":[45],"a":[46,75,114,145],"novel":[47],"multi-modal":[48,176],"pre-training":[49,121],"instruction":[51,136],"fine-tuning":[52,137],"paradigm":[53],"that":[54,78,148],"bootstraps":[55],"alignment":[57,132],"cross-modal":[60],"collaboration.":[61],"Building":[62],"on":[63,93,165],"foundation":[65],"BLIP-2,":[67],"Lyrics":[68],"infuses":[69],"local":[70],"features":[72,155],"extracted":[73],"refiner":[77],"includes":[79],"image":[80],"tagging,":[81],"semantic":[85],"segmentation":[86],"modules":[87],"into":[88],"Querying":[90],"Transformer,":[91],"while":[92],"text":[95],"side,":[96],"language":[98],"inputs":[99],"equip":[100],"boundary":[102],"boxes":[103],"tags":[105],"derived":[106],"refiner.":[110],"We":[111],"further":[112],"introduce":[113,140],"two-stage":[115],"training":[116],"scheme,":[117],"which":[119],"stage":[122],"bridges":[123],"modality":[125],"gap":[126],"through":[127],"explicit":[128],"comprehensive":[130],"targets.":[133],"During":[134],"stage,":[138],"semantic-aware":[141],"feature":[143],"extraction,":[144],"crucial":[146],"method":[147],"enables":[149],"extract":[153],"informative":[154],"concrete":[157],"objects.":[159],"Our":[160],"approach":[161],"achieves":[162],"strong":[163],"performance":[164],"13":[166],"held-out":[167],"datasets":[168],"across":[169],"tasks,":[172],"demonstrates":[174],"promising":[175],"detailed":[179],"depiction":[180],"real":[183]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4389649731","counts_by_year":[{"year":2024,"cited_by_count":4}],"updated_date":"2025-01-20T09:44:58.742894","created_date":"2023-12-13"}