{"id":"https://openalex.org/W4389363869","doi":"https://doi.org/10.48550/arxiv.2312.01564","title":"APoLLo: Unified Adapter and Prompt Learning for Vision Language Models","display_name":"APoLLo: Unified Adapter and Prompt Learning for Vision Language Models","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4389363869","doi":"https://doi.org/10.48550/arxiv.2312.01564"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.01564","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2312.01564","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5055586798","display_name":"Sanjoy Chowdhury","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chowdhury, Sanjoy","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101977185","display_name":"Sayan Nag","orcid":"https://orcid.org/0000-0001-5652-125X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Nag, Sayan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5004194238","display_name":"Dinesh Manocha","orcid":"https://orcid.org/0000-0001-7047-9801"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Manocha, Dinesh","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9836,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9703,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/adapter","display_name":"Adapter (computing)","score":0.7275607},{"id":"https://openalex.org/keywords/overfitting","display_name":"Overfitting","score":0.56716347},{"id":"https://openalex.org/keywords/modalities","display_name":"Modalities","score":0.44391963}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7934787},{"id":"https://openalex.org/C177284502","wikidata":"https://www.wikidata.org/wiki/Q1005390","display_name":"Adapter (computing)","level":2,"score":0.7275607},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.60550886},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.57657826},{"id":"https://openalex.org/C22019652","wikidata":"https://www.wikidata.org/wiki/Q331309","display_name":"Overfitting","level":3,"score":0.56716347},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.4773838},{"id":"https://openalex.org/C2779903281","wikidata":"https://www.wikidata.org/wiki/Q6888026","display_name":"Modalities","level":2,"score":0.44391963},{"id":"https://openalex.org/C2776436953","wikidata":"https://www.wikidata.org/wiki/Q5163215","display_name":"Consistency (knowledge bases)","level":2,"score":0.412254},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.35060006},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.11662412},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C36289849","wikidata":"https://www.wikidata.org/wiki/Q34749","display_name":"Social science","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.01564","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2312.01564","pdf_url":"http://arxiv.org/pdf/2312.01564","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2312.01564","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.01564","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","score":0.67,"display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4378510483","https://openalex.org/W4376166922","https://openalex.org/W4362597605","https://openalex.org/W4297676672","https://openalex.org/W4281702477","https://openalex.org/W4221142204","https://openalex.org/W3009056573","https://openalex.org/W2922073769","https://openalex.org/W2490526372","https://openalex.org/W1574414179"],"abstract_inverted_index":{"The":[0],"choice":[1],"of":[2,13,47],"input":[3],"text":[4],"prompt":[5],"plays":[6],"a":[7,24,55,118],"critical":[8],"role":[9],"in":[10,54,64,93],"the":[11,44,73,76,83],"performance":[12],"Vision-Language":[14,35],"Pretrained":[15],"(VLP)":[16],"models":[17,49],"such":[18],"as":[19],"CLIP.":[20],"We":[21,58,79],"present":[22],"APoLLo,":[23],"unified":[25],"multi-modal":[26],"approach":[27],"that":[28],"combines":[29],"Adapter":[30],"and":[31,68,110],"Prompt":[32],"learning":[33],"for":[34,130],"models.":[36],"Our":[37,96],"method":[38,97],"is":[39,98],"designed":[40],"to":[41,71,90,105,122],"substantially":[42],"improve":[43],"generalization":[45,104],"capabilities":[46],"VLP":[48],"when":[50],"they":[51],"are":[52],"fine-tuned":[53],"few-shot":[56],"setting.":[57],"introduce":[59],"trainable":[60],"cross-attention-based":[61],"adapter":[62],"layers":[63],"conjunction":[65],"with":[66],"vision":[67],"language":[69],"encoders":[70],"strengthen":[72],"alignment":[74],"between":[75,82],"two":[77],"modalities.":[78],"enforce":[80],"consistency":[81],"respective":[84],"encoder":[85],"branches":[86],"(receiving":[87],"augmented":[88],"inputs)":[89],"prevent":[91],"overfitting":[92],"downstream":[94],"tasks.":[95],"evaluated":[99],"on":[100,127],"three":[101],"representative":[102],"tasks:":[103],"novel":[106,128],"classes,":[107],"cross-dataset":[108],"evaluation,":[109],"unseen":[111],"domain":[112],"shifts.":[113],"In":[114],"practice,":[115],"APoLLo":[116],"achieves":[117],"relative":[119],"gain":[120],"up":[121],"6.03%":[123],"over":[124],"MaPLe":[125],"(SOTA)":[126],"classes":[129],"10":[131],"diverse":[132],"image":[133],"recognition":[134],"datasets.":[135]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4389363869","counts_by_year":[],"updated_date":"2025-01-20T05:55:46.633567","created_date":"2023-12-06"}