{"id":"https://openalex.org/W4389325853","doi":"https://doi.org/10.48550/arxiv.2312.00380","title":"Enhancing Explainability in Mobility Data Science through a combination of methods","display_name":"Enhancing Explainability in Mobility Data Science through a combination of methods","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4389325853","doi":"https://doi.org/10.48550/arxiv.2312.00380"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.00380","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2312.00380","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5050942947","display_name":"Georgios Makridis","orcid":"https://orcid.org/0000-0002-6165-7239"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Makridis, Georgios","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5052440692","display_name":"Vasileios Koukos","orcid":"https://orcid.org/0000-0003-2111-2311"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Koukos, Vasileios","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5018359309","display_name":"Georgios Fatouros","orcid":"https://orcid.org/0000-0001-6843-089X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fatouros, Georgios","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5069674161","display_name":"Dimosthenis Kyriazis","orcid":"https://orcid.org/0000-0001-7019-7214"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kyriazis, Dimosthenis","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":66},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11106","display_name":"Data Management and Algorithms","score":0.9927,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11106","display_name":"Data Management and Algorithms","score":0.9927,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10799","display_name":"Data Visualization and Analytics","score":0.992,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11719","display_name":"Data Quality and Management","score":0.9899,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/interpretability","display_name":"Interpretability","score":0.9159881},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.43064746},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.42742333},{"id":"https://openalex.org/keywords/relevance","display_name":"Relevance","score":0.42421678}],"concepts":[{"id":"https://openalex.org/C2781067378","wikidata":"https://www.wikidata.org/wiki/Q17027399","display_name":"Interpretability","level":2,"score":0.9159881},{"id":"https://openalex.org/C13662910","wikidata":"https://www.wikidata.org/wiki/Q193139","display_name":"Trajectory","level":2,"score":0.6884048},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.63562673},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.49127525},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.46519056},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.43064746},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.42742333},{"id":"https://openalex.org/C158154518","wikidata":"https://www.wikidata.org/wiki/Q7310970","display_name":"Relevance (law)","level":2,"score":0.42421678},{"id":"https://openalex.org/C107457646","wikidata":"https://www.wikidata.org/wiki/Q207434","display_name":"Human\u2013computer interaction","level":1,"score":0.3496685},{"id":"https://openalex.org/C188147891","wikidata":"https://www.wikidata.org/wiki/Q147638","display_name":"Cognitive science","level":1,"score":0.32634127},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3212362},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.19010171},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.08568445},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C1276947","wikidata":"https://www.wikidata.org/wiki/Q333","display_name":"Astronomy","level":1,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.00380","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2312.00380","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2312.00380","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4390569940","https://openalex.org/W4388685194","https://openalex.org/W4388422664","https://openalex.org/W4361193272","https://openalex.org/W4312407344","https://openalex.org/W4310278675","https://openalex.org/W2963326959","https://openalex.org/W2951187577","https://openalex.org/W2905433371","https://openalex.org/W2888392564"],"abstract_inverted_index":{"In":[0,112],"the":[1,7,19,38,94,119],"domain":[2],"of":[3,10,22,97,122,136,221],"Mobility":[4],"Data":[5,172,203],"Science,":[6],"intricate":[8],"task":[9],"interpreting":[11],"models":[12,107],"trained":[13],"on":[14,93,109],"trajectory":[15,45,74,110],"data,":[16],"and":[17,41,76,102,141,152,176,184,202],"elucidating":[18],"spatio-temporal":[20],"movement":[21],"entities,":[23],"has":[24],"persistently":[25],"posed":[26],"significant":[27],"challenges.":[28],"Conventional":[29],"XAI":[30,58],"techniques,":[31,99],"although":[32],"brimming":[33],"with":[34,164,200],"potential,":[35],"frequently":[36],"overlook":[37],"distinct":[39],"structure":[40],"nuances":[42],"inherent":[43],"within":[44],"data.":[46,111],"Observing":[47],"this":[48,114],"deficiency,":[49],"we":[50,116,145],"introduced":[51],"a":[52,131,147,161,180,187,222],"comprehensive":[53],"framework":[54],"that":[55,84],"harmonizes":[56],"pivotal":[57,219],"techniques:":[59],"LIME":[60],"(Local":[61],"Interpretable":[62],"Model-agnostic":[63],"Explanations),":[64],"SHAP":[65],"(SHapley":[66],"Additive":[67],"exPlanations),":[68],"Saliency":[69],"maps,":[70],"attention":[71],"mechanisms,":[72],"direct":[73],"visualization,":[75],"Permutation":[77],"Feature":[78],"Importance":[79],"(PFI).":[80],"Unlike":[81],"conventional":[82],"strategies":[83],"deploy":[85],"these":[86,98],"methods":[87,191],"singularly,":[88],"our":[89,143],"unified":[90],"approach":[91],"capitalizes":[92],"collective":[95],"efficacy":[96],"yielding":[100],"deeper":[101],"more":[103],"granular":[104],"insights":[105],"for":[106,189,192],"reliant":[108],"crafting":[113],"synthesis,":[115],"effectively":[117],"address":[118],"multifaceted":[120],"essence":[121],"trajectories,":[123],"achieving":[124],"not":[125],"only":[126],"amplified":[127],"interpretability":[128],"but":[129],"also":[130],"nuanced,":[132],"contextually":[133],"rich":[134],"comprehension":[135],"model":[137],"decisions.":[138],"To":[139],"validate":[140],"enhance":[142],"framework,":[144],"undertook":[146],"survey":[148],"to":[149],"gauge":[150],"preferences":[151],"reception":[153],"among":[154],"various":[155],"user":[156],"demographics.":[157],"Our":[158],"findings":[159],"underscored":[160],"dichotomy:":[162],"professionals":[163],"academic":[165],"orientations,":[166],"particularly":[167],"those":[168],"in":[169],"roles":[170],"like":[171],"Scientist,":[173],"IT":[174],"Expert,":[175],"ML":[177],"Engineer,":[178],"showcased":[179,205],"profound,":[181],"technical":[182],"understanding":[183],"often":[185],"exhibited":[186],"predilection":[188],"amalgamated":[190],"interpretability.":[193],"Conversely,":[194],"end-users":[195],"or":[196,215],"individuals":[197],"less":[198],"acquainted":[199],"AI":[201],"Science":[204],"simpler":[206],"inclinations,":[207],"such":[208],"as":[209],"bar":[210],"plots":[211],"indicating":[212],"timestep":[213],"significance":[214],"visual":[216],"depictions":[217],"pinpointing":[218],"segments":[220],"vessel's":[223],"trajectory.":[224]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4389325853","counts_by_year":[],"updated_date":"2025-02-19T02:23:47.663298","created_date":"2023-12-05"}