{"id":"https://openalex.org/W4389217400","doi":"https://doi.org/10.48550/arxiv.2311.17325","title":"Alternate Diverse Teaching for Semi-supervised Medical Image Segmentation","display_name":"Alternate Diverse Teaching for Semi-supervised Medical Image Segmentation","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4389217400","doi":"https://doi.org/10.48550/arxiv.2311.17325"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.17325","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2311.17325","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5072694516","display_name":"Zhen Zhao","orcid":"https://orcid.org/0000-0002-0796-4078"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhao, Zhen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089362848","display_name":"Zicheng Wang","orcid":"https://orcid.org/0009-0003-3553-6470"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Zicheng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5088191810","display_name":"Longyue Wang","orcid":"https://orcid.org/0000-0002-9062-6183"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Longyue","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5073968803","display_name":"Yixuan Yuan","orcid":"https://orcid.org/0000-0002-0853-6948"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yuan, Yixuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100643784","display_name":"Luping Zhou","orcid":"https://orcid.org/0000-0001-8762-2424"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhou, Luping","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.906028,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":68,"max":79},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9923,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9923,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9905,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9844,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.47344348}],"concepts":[{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.7579167},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.63992375},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5079902},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.50054264},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.47344348},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.44089803},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.42167902}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.17325","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2311.17325","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.17325","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","score":0.61,"display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4389858081","https://openalex.org/W4385583601","https://openalex.org/W4379231730","https://openalex.org/W4298131179","https://openalex.org/W4224009465","https://openalex.org/W2961085424","https://openalex.org/W2799953226","https://openalex.org/W2501551404","https://openalex.org/W2113201962","https://openalex.org/W1522196789"],"abstract_inverted_index":{"Semi-supervised":[0],"medical":[1,159],"image":[2],"segmentation":[3,160],"studies":[4],"have":[5],"shown":[6],"promise":[7],"in":[8,39,60,78],"training":[9],"models":[10,53],"with":[11,102],"limited":[12],"labeled":[13],"data.":[14],"However,":[15],"current":[16],"dominant":[17],"teacher-student":[18,41],"based":[19],"approaches":[20],"can":[21],"suffer":[22],"from":[23,69,117,134],"the":[24,66,70,73,82,90,97,130,136,142,147,155],"confirmation":[25,67],"bias.":[26],"To":[27,64],"address":[28],"this":[29],"challenge,":[30],"we":[31],"propose":[32],"AD-MT,":[33],"an":[34,61,124],"alternate":[35,62],"diverse":[36,71,99,115],"teaching":[37,119],"approach":[38],"a":[40,45],"framework.":[42],"It":[43],"involves":[44],"single":[46],"student":[47],"model":[48,131],"and":[49,58,89,109,138,149,157],"two":[50,79],"non-trainable":[51],"teacher":[52],"that":[54],"are":[55],"momentum-updated":[56],"periodically":[57],"randomly":[59],"fashion.":[63],"mitigate":[65],"bias":[68],"supervision,":[72],"core":[74],"of":[75,151],"AD-MT":[76,153],"lies":[77],"proposed":[80],"modules:":[81],"Random":[83],"Periodic":[84],"Alternate":[85],"(RPA)":[86],"Updating":[87],"Module":[88,92],"Conflict-Combating":[91],"(CCM).":[93],"The":[94,121],"RPA":[95],"schedules":[96],"alternating":[98],"updating":[100],"process":[101],"complementary":[103],"data":[104,107],"batches,":[105],"distinct":[106],"augmentation,":[108],"random":[110],"switching":[111],"periods":[112],"to":[113,128,132],"encourage":[114,129],"reasoning":[116],"different":[118],"perspectives.":[120],"CCM":[122],"employs":[123],"entropy-based":[125],"ensembling":[126],"strategy":[127],"learn":[133],"both":[135],"consistent":[137],"conflicting":[139],"predictions":[140],"between":[141],"teachers.":[143],"Experimental":[144],"results":[145],"demonstrate":[146],"effectiveness":[148],"superiority":[150],"our":[152],"on":[154],"2D":[156],"3D":[158],"benchmarks":[161],"across":[162],"various":[163],"semi-supervised":[164],"settings.":[165]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4389217400","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2024-12-09T23:18:23.242638","created_date":"2023-12-01"}