{"id":"https://openalex.org/W4389116403","doi":"https://doi.org/10.48550/arxiv.2311.15876","title":"RO-LLaMA: Generalist LLM for Radiation Oncology via Noise Augmentation and Consistency Regularization","display_name":"RO-LLaMA: Generalist LLM for Radiation Oncology via Noise Augmentation and Consistency Regularization","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4389116403","doi":"https://doi.org/10.48550/arxiv.2311.15876"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.15876","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2311.15876","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5072708865","display_name":"Kwanyoung Kim","orcid":"https://orcid.org/0000-0001-7508-7145"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kim, Kwanyoung","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5069516527","display_name":"Yujin Oh","orcid":"https://orcid.org/0000-0003-4319-8435"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Oh, Yujin","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5057920247","display_name":"Sang Joon Park","orcid":"https://orcid.org/0000-0002-9223-3172"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Park, Sangjoon","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5071552674","display_name":"Hwa Kyung Byun","orcid":"https://orcid.org/0000-0002-8964-6275"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Byun, Hwa Kyung","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100706226","display_name":"Jin Sung Kim","orcid":"https://orcid.org/0000-0003-1415-6471"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kim, Jin Sung","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5030066675","display_name":"Yong Bae Kim","orcid":"https://orcid.org/0000-0001-7573-6862"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kim, Yong Bae","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5012644755","display_name":"Jong Chul Ye","orcid":"https://orcid.org/0000-0001-9763-9609"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ye, Jong Chul","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.876513,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":65,"max":76},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10202","display_name":"Lung Cancer Diagnosis and Treatment","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10358","display_name":"Advanced Radiotherapy Techniques","score":0.9955,"subfield":{"id":"https://openalex.org/subfields/3108","display_name":"Radiation"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.5933999},{"id":"https://openalex.org/keywords/radiation-oncology","display_name":"Radiation oncology","score":0.5901501},{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.5027528}],"concepts":[{"id":"https://openalex.org/C177212765","wikidata":"https://www.wikidata.org/wiki/Q627335","display_name":"Workflow","level":2,"score":0.63102067},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.61959064},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.5933999},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5919197},{"id":"https://openalex.org/C2992520072","wikidata":"https://www.wikidata.org/wiki/Q180507","display_name":"Radiation oncology","level":3,"score":0.5901501},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.5027528},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.49629623},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.4770695},{"id":"https://openalex.org/C2776436953","wikidata":"https://www.wikidata.org/wiki/Q5163215","display_name":"Consistency (knowledge bases)","level":2,"score":0.4664708},{"id":"https://openalex.org/C19527891","wikidata":"https://www.wikidata.org/wiki/Q1120908","display_name":"Medical physics","level":1,"score":0.4171931},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4162156},{"id":"https://openalex.org/C31601959","wikidata":"https://www.wikidata.org/wiki/Q931309","display_name":"Medical imaging","level":2,"score":0.41410708},{"id":"https://openalex.org/C170858558","wikidata":"https://www.wikidata.org/wiki/Q1394144","display_name":"Automatic summarization","level":2,"score":0.410763},{"id":"https://openalex.org/C509974204","wikidata":"https://www.wikidata.org/wiki/Q180507","display_name":"Radiation therapy","level":2,"score":0.19862494},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.18582436},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.11322519},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.15876","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2311.15876","pdf_url":"http://arxiv.org/pdf/2311.15876","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2311.15876","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.15876","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.49,"id":"https://metadata.un.org/sdg/9","display_name":"Industry, innovation and infrastructure"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4389760904","https://openalex.org/W4306886878","https://openalex.org/W4242223894","https://openalex.org/W3148229873","https://openalex.org/W2366403280","https://openalex.org/W2150160875","https://openalex.org/W2091301346","https://openalex.org/W1779739957","https://openalex.org/W1517524280","https://openalex.org/W1495108544"],"abstract_inverted_index":{"Recent":[0],"advancements":[1],"in":[2,28],"Artificial":[3],"Intelligence":[4],"(AI)":[5],"have":[6],"profoundly":[7],"influenced":[8],"medical":[9,37],"fields,":[10],"by":[11,36],"providing":[12],"tools":[13],"to":[14,24,31,84,103],"reduce":[15],"clinical":[16,66,70,87,138],"workloads.":[17],"However,":[18],"most":[19],"AI":[20],"models":[21],"are":[22],"constrained":[23],"execute":[25],"unimodal":[26],"tasks,":[27,88],"stark":[29],"contrast":[30],"the":[32,54,108],"comprehensive":[33],"approaches":[34],"utilized":[35],"professionals.":[38],"To":[39],"address":[40],"this,":[41],"here":[42],"we":[43,89],"present":[44,91],"RO-LMM,":[45],"a":[46,92],"multi-purpose":[47],"large":[48],"multimodal":[49],"model":[50,60],"(LMM)":[51],"tailored":[52],"for":[53,136],"field":[55],"of":[56,63,110],"radiation":[57,73],"oncology.":[58],"This":[59],"covers":[61],"series":[62],"tasks":[64,139],"within":[65],"workflow,":[67],"adept":[68],"at":[69],"report":[71],"summarization,":[72],"treatment":[74],"plan":[75],"suggestion,":[76],"and":[77,114],"plan-guided":[78],"target":[79],"volume":[80],"segmentation.":[81],"In":[82],"particular,":[83],"perform":[85],"consecutive":[86],"further":[90],"novel":[93],"Consistency":[94,123],"Embedding":[95,124],"Fine-Tuning":[96],"(CEFTune)":[97],"technique,":[98],"which":[99],"boosts":[100],"LMM's":[101],"robustness":[102],"noisy":[104],"inputs":[105],"while":[106],"preserving":[107],"capability":[109],"handling":[111],"clean":[112],"inputs,":[113],"transform":[115],"this":[116],"concept":[117],"into":[118],"LMM-driven":[119],"segmentation":[120],"framework":[121],"as":[122],"Segmentation~(CESEG).":[125],"Experimental":[126],"results":[127],"on":[128],"multi-centre":[129],"cohorts":[130],"demonstrate":[131],"our":[132],"RO-LMM's":[133],"promising":[134],"performance":[135],"multiple":[137],"with":[140],"generalization":[141],"capabilities.":[142]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4389116403","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-04-20T02:48:08.460376","created_date":"2023-11-29"}