{"id":"https://openalex.org/W4389072153","doi":"https://doi.org/10.48550/arxiv.2311.13777","title":"GS-Pose: Category-Level Object Pose Estimation via Geometric and Semantic Correspondence","display_name":"GS-Pose: Category-Level Object Pose Estimation via Geometric and Semantic Correspondence","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4389072153","doi":"https://doi.org/10.48550/arxiv.2311.13777"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.13777","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2311.13777","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100714810","display_name":"Pengyuan Wang","orcid":"https://orcid.org/0000-0002-6444-1257"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wang, Pengyuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102963090","display_name":"Takuya Ikeda","orcid":"https://orcid.org/0000-0002-3312-5120"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ikeda, Takuya","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039562009","display_name":"Robert Lee","orcid":"https://orcid.org/0000-0001-7535-3554"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lee, Robert","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5113446235","display_name":"Koichi Nishiwaki","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Nishiwaki, Koichi","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10653","display_name":"Robot Manipulation and Learning","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10653","display_name":"Robot Manipulation and Learning","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10191","display_name":"Robotics and Sensor-Based Localization","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C52102323","wikidata":"https://www.wikidata.org/wiki/Q1671968","display_name":"Pose","level":2,"score":0.8652042},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.8050102},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7539787},{"id":"https://openalex.org/C36613465","wikidata":"https://www.wikidata.org/wiki/Q4636322","display_name":"3D pose estimation","level":3,"score":0.71871275},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.67554474},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.5681156},{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.5652905},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.50229836},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.47533134},{"id":"https://openalex.org/C64876066","wikidata":"https://www.wikidata.org/wiki/Q5141226","display_name":"Cognitive neuroscience of visual object recognition","level":3,"score":0.44810528},{"id":"https://openalex.org/C34413123","wikidata":"https://www.wikidata.org/wiki/Q170978","display_name":"Robotics","level":3,"score":0.4282285},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.42521012},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.41340178},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4040931},{"id":"https://openalex.org/C90509273","wikidata":"https://www.wikidata.org/wiki/Q11012","display_name":"Robot","level":2,"score":0.14526093},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.11993116},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.13777","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2311.13777","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.13777","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4387967917","https://openalex.org/W4386075737","https://openalex.org/W4312694060","https://openalex.org/W4299867837","https://openalex.org/W4287600488","https://openalex.org/W4281696776","https://openalex.org/W4253893311","https://openalex.org/W3201205132","https://openalex.org/W2798721181","https://openalex.org/W2113785214"],"abstract_inverted_index":{"Category-level":[0],"pose":[1,76],"estimation":[2,77],"is":[3],"a":[4,65,94,109,131,160,170],"challenging":[5],"task":[6],"with":[7,130,159,169],"many":[8],"potential":[9],"applications":[10],"in":[11,74],"computer":[12],"vision":[13],"and":[14,89,115,154],"robotics.":[15],"Recently,":[16],"deep-learning-based":[17],"approaches":[18,62],"have":[19],"made":[20],"great":[21],"progress,":[22],"but":[23,60],"are":[24,149],"typically":[25],"hindered":[26],"by":[27,47],"the":[28,58,75,146,173],"need":[29],"for":[30,108,121],"large":[31],"datasets":[32],"of":[33,67,126,172],"either":[34],"pose-labelled":[35],"real":[36],"images":[37,55],"or":[38],"carefully":[39],"tuned":[40],"photorealistic":[41],"simulators.":[42],"This":[43,135],"can":[44,71],"be":[45,72],"avoided":[46],"using":[48],"only":[49],"geometry":[50],"inputs":[51],"such":[52],"as":[53],"depth":[54],"to":[56,85,140,151],"reduce":[57],"domain-gap":[59],"these":[61],"suffer":[63],"from":[64,93,102],"lack":[66],"semantic":[68,90,147],"information,":[69],"which":[70],"vital":[73],"problem.":[78],"To":[79],"resolve":[80],"this":[81,103,120,158],"conflict,":[82],"we":[83],"propose":[84],"utilize":[86],"both":[87],"geometric":[88],"features":[91,101,148],"obtained":[92],"pre-trained":[95],"foundation":[96,104],"model.Our":[97],"approach":[98],"projects":[99],"2D":[100],"model":[105,112],"into":[106],"3D":[107],"single":[110,123],"object":[111,128,152],"per":[113],"category,":[114],"then":[116],"performs":[117],"matching":[118,133],"against":[119],"new":[122],"view":[124],"observations":[125],"unseen":[127],"instances":[129],"trained":[132],"network.":[134],"requires":[136],"significantly":[137],"less":[138],"data":[139,174],"train":[141],"than":[142],"prior":[143,167],"methods":[144,168],"since":[145],"robust":[150],"texture":[153],"appearance.":[155],"We":[156],"demonstrate":[157],"rich":[161],"evaluation,":[162],"showing":[163],"improved":[164],"performance":[165],"over":[166],"fraction":[171],"required.":[175]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4389072153","counts_by_year":[],"updated_date":"2025-01-21T04:39:34.913988","created_date":"2023-11-28"}