{"id":"https://openalex.org/W4388927482","doi":"https://doi.org/10.48550/arxiv.2311.12043","title":"Efficient Domain Adaptation via Generative Prior for 3D Infant Pose Estimation","display_name":"Efficient Domain Adaptation via Generative Prior for 3D Infant Pose Estimation","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4388927482","doi":"https://doi.org/10.48550/arxiv.2311.12043"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.12043","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2311.12043","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101333369","display_name":"Zhuoran Zhou","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhou, Zhuoran","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101618974","display_name":"Zhongyu Jiang","orcid":"https://orcid.org/0000-0003-4462-6497"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jiang, Zhongyu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103021774","display_name":"Wenhao Chai","orcid":"https://orcid.org/0000-0003-2611-0008"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chai, Wenhao","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047672937","display_name":"Cheng-Yen Yang","orcid":"https://orcid.org/0009-0004-2631-6756"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yang, Cheng-Yen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100440404","display_name":"Lei Li","orcid":"https://orcid.org/0000-0003-2884-1875"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Li, Lei","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5101702810","display_name":"Jenq\u2013Neng Hwang","orcid":"https://orcid.org/0000-0002-8877-2421"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hwang, Jenq-Neng","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":65},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12740","display_name":"Gait Recognition and Analysis","score":0.9818,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9765,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/lift","display_name":"Lift (data mining)","score":0.6802927},{"id":"https://openalex.org/keywords/domain-adaptation","display_name":"Domain Adaptation","score":0.62722033},{"id":"https://openalex.org/keywords/generative-model","display_name":"Generative model","score":0.43042368},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.422114}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7619976},{"id":"https://openalex.org/C52102323","wikidata":"https://www.wikidata.org/wiki/Q1671968","display_name":"Pose","level":2,"score":0.7578362},{"id":"https://openalex.org/C139002025","wikidata":"https://www.wikidata.org/wiki/Q3001212","display_name":"Lift (data mining)","level":2,"score":0.6802927},{"id":"https://openalex.org/C177769412","wikidata":"https://www.wikidata.org/wiki/Q278090","display_name":"Prior probability","level":3,"score":0.65401477},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6529203},{"id":"https://openalex.org/C2776434776","wikidata":"https://www.wikidata.org/wiki/Q19246213","display_name":"Domain adaptation","level":3,"score":0.62722033},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.62291706},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5859163},{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.52221125},{"id":"https://openalex.org/C96250715","wikidata":"https://www.wikidata.org/wiki/Q965330","display_name":"Estimation","level":2,"score":0.5101876},{"id":"https://openalex.org/C36613465","wikidata":"https://www.wikidata.org/wiki/Q4636322","display_name":"3D pose estimation","level":3,"score":0.5047704},{"id":"https://openalex.org/C139807058","wikidata":"https://www.wikidata.org/wiki/Q352374","display_name":"Adaptation (eye)","level":2,"score":0.46461144},{"id":"https://openalex.org/C167966045","wikidata":"https://www.wikidata.org/wiki/Q5532625","display_name":"Generative model","level":3,"score":0.43042368},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.422114},{"id":"https://openalex.org/C22100474","wikidata":"https://www.wikidata.org/wiki/Q4800952","display_name":"Articulated body pose estimation","level":4,"score":0.41708854},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4071651},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.14262247},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.12043","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2311.12043","pdf_url":"http://arxiv.org/pdf/2311.12043","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2311.12043","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.12043","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4386075737","https://openalex.org/W4382141741","https://openalex.org/W4299867837","https://openalex.org/W4285662725","https://openalex.org/W3165753266","https://openalex.org/W2951583186","https://openalex.org/W2946083937","https://openalex.org/W2798721181","https://openalex.org/W2113785214","https://openalex.org/W2088028039"],"abstract_inverted_index":{"Although":[0],"3D":[1,103,126],"human":[2],"pose":[3,32,53,128,131],"estimation":[4,33],"has":[5],"gained":[6],"impressive":[7],"development":[8],"in":[9,39],"recent":[10],"years,":[11],"only":[12,151],"a":[13,119,152],"few":[14],"works":[15],"focus":[16],"on":[17,172,179],"infants,":[18],"that":[19,97,140,162],"have":[20,26],"different":[21],"bone":[22],"lengths":[23],"and":[24,43,80,176],"also":[25,56,138],"limited":[27],"data.":[28,115],"Directly":[29],"applying":[30],"adult":[31,127],"models":[34,63],"typically":[35],"achieves":[36],"low":[37],"performance":[38,168],"the":[40,49,59,73,110,173,180],"infant":[41,52,104,130],"domain":[42,78,124,147],"suffers":[44],"from":[45,106],"out-of-distribution":[46],"issues.":[47],"Moreover,":[48],"limitation":[50],"of":[51,61,75,93,112,155,169],"data":[54,81,156],"collection":[55],"heavily":[57],"constrains":[58],"efficiency":[60],"learning-based":[62],"to":[64,68,101,123,129,132],"lift":[65],"2D":[66,107],"poses":[67],"3D.":[69],"To":[70],"deal":[71],"with":[72],"issues":[74],"small":[76,134,153],"datasets,":[77],"adaptation":[79],"augmentation":[82],"are":[83],"commonly":[84],"used":[85],"techniques.":[86],"Following":[87],"this":[88],"paradigm,":[89],"we":[90,137,160],"take":[91],"advantage":[92],"an":[94],"optimization-based":[95],"method":[96],"utilizes":[98],"generative":[99],"priors":[100],"predict":[102],"keypoints":[105,108],"without":[109],"need":[111],"large":[113],"training":[114],"We":[116],"further":[117],"apply":[118],"guided":[120],"diffusion":[121],"model":[122,164],"adapt":[125],"supplement":[133],"datasets.":[135],"Besides,":[136],"prove":[139],"our":[141,163],"method,":[142],"ZeDO-i,":[143],"could":[144],"attain":[145],"efficient":[146],"adaptation,":[148],"even":[149],"if":[150],"number":[154],"is":[157],"given.":[158],"Quantitatively,":[159],"claim":[161],"attains":[165],"state-of-the-art":[166],"MPJPE":[167],"43.6":[170],"mm":[171,178],"SyRIP":[174],"dataset":[175],"21.2":[177],"MINI-RGBD":[181],"dataset.":[182]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4388927482","counts_by_year":[],"updated_date":"2025-05-01T12:23:38.807840","created_date":"2023-11-23"}