{"id":"https://openalex.org/W4388787752","doi":"https://doi.org/10.48550/arxiv.2311.09615","title":"On Retrieval Augmentation and the Limitations of Language Model Training","display_name":"On Retrieval Augmentation and the Limitations of Language Model Training","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4388787752","doi":"https://doi.org/10.48550/arxiv.2311.09615"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.09615","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2311.09615","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5075993628","display_name":"Ting-Rui Chiang","orcid":"https://orcid.org/0000-0002-8398-8944"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Chiang, Ting-Rui","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103098617","display_name":"Xinyan Yu","orcid":"https://orcid.org/0000-0002-8286-3306"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yu, Xinyan Velocity","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5084800356","display_name":"Joshua A. Robinson","orcid":"https://orcid.org/0000-0002-1513-7187"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Robinson, Joshua","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5041927922","display_name":"Ollie Liu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Liu, Ollie","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5079924297","display_name":"Isabelle Lee","orcid":"https://orcid.org/0000-0003-4125-2610"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lee, Isabelle","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5060347694","display_name":"Dani Yogatama","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yogatama, Dani","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":65},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9565,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9565,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9489,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.63889843},{"id":"https://openalex.org/C2777211547","wikidata":"https://www.wikidata.org/wiki/Q17141490","display_name":"Training (meteorology)","level":2,"score":0.5646509},{"id":"https://openalex.org/C137293760","wikidata":"https://www.wikidata.org/wiki/Q3621696","display_name":"Language model","level":2,"score":0.5356317},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.47772667},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.36338696},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.36192286},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.07214931},{"id":"https://openalex.org/C153294291","wikidata":"https://www.wikidata.org/wiki/Q25261","display_name":"Meteorology","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.09615","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2311.09615","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.09615","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4366179611","https://openalex.org/W3216976533","https://openalex.org/W3204019825","https://openalex.org/W2997094352","https://openalex.org/W2810751659","https://openalex.org/W258997015","https://openalex.org/W2495260952","https://openalex.org/W230091440","https://openalex.org/W2233261550","https://openalex.org/W100620283"],"abstract_inverted_index":{"Augmenting":[0],"a":[1,44,102,113],"language":[2],"model":[3,105],"(LM)":[4],"with":[5],"$k$-nearest":[6],"neighbors":[7],"($k$NN)":[8],"retrieval":[9,84,96],"on":[10],"its":[11,17],"training":[12,56],"data":[13,57],"alone":[14],"can":[15],"decrease":[16],"perplexity,":[18],"though":[19],"the":[20,38,53],"underlying":[21],"reasons":[22],"for":[23,71,77,116],"this":[24,28,90],"remain":[25],"elusive.":[26],"In":[27],"work,":[29],"we":[30,99],"rule":[31],"out":[32],"one":[33],"previously":[34],"posited":[35],"possibility":[36],"--":[37],"\"softmax":[39],"bottleneck.\"":[40],"We":[41,74],"then":[42],"create":[43],"new":[45],"dataset":[46],"to":[47,93,110],"evaluate":[48],"LM":[49],"generalization":[50],"ability":[51],"in":[52,89],"setting":[54],"where":[55],"contains":[58],"additional":[59],"information":[60],"that":[61,106],"is":[62,68],"not":[63],"causally":[64],"relevant.":[65],"This":[66,119],"task":[67],"challenging":[69],"even":[70],"GPT-3.5":[72],"Turbo.":[73],"show":[75],"that,":[76],"both":[78],"GPT-2":[79],"and":[80],"Mistral":[81],"7B,":[82],"$k$NN":[83,95],"augmentation":[85],"consistently":[86],"improves":[87],"performance":[88],"setting.":[91],"Finally,":[92],"make":[94],"more":[97],"accessible,":[98],"propose":[100],"using":[101],"multi-layer":[103],"perceptron":[104],"maps":[107],"datastore":[108],"keys":[109],"values":[111],"as":[112],"drop-in":[114],"replacement":[115],"traditional":[117],"retrieval.":[118],"reduces":[120],"storage":[121],"costs":[122],"by":[123],"over":[124],"25x.":[125]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4388787752","counts_by_year":[],"updated_date":"2025-04-16T05:39:14.844991","created_date":"2023-11-18"}