{"id":"https://openalex.org/W4388717138","doi":"https://doi.org/10.48550/arxiv.2311.08149","title":"Modeling Complex Disease Trajectories using Deep Generative Models with Semi-Supervised Latent Processes","display_name":"Modeling Complex Disease Trajectories using Deep Generative Models with Semi-Supervised Latent Processes","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4388717138","doi":"https://doi.org/10.48550/arxiv.2311.08149"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.08149","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2311.08149","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5018085325","display_name":"C\u00e9cile Trottet","orcid":"https://orcid.org/0000-0002-1746-1343"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Trottet, C\u00e9cile","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5071722406","display_name":"Manuel Sch\u00fcrch","orcid":"https://orcid.org/0000-0003-2175-2511"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sch\u00fcrch, Manuel","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5062401184","display_name":"Ahmed Allam","orcid":"https://orcid.org/0000-0003-0871-1977"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Allam, Ahmed","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5109331542","display_name":"Imon Barua","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Barua, Imon","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5024495104","display_name":"L. Petelytska","orcid":"https://orcid.org/0000-0001-8330-8681"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Petelytska, Liubov","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059359523","display_name":"Oliver Distler","orcid":"https://orcid.org/0000-0002-0546-8310"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Distler, Oliver","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5005002226","display_name":"Anna\u2010Maria Hoffmann\u2010Vold","orcid":"https://orcid.org/0000-0001-6467-7422"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hoffmann-Vold, Anna-Maria","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5025057284","display_name":"Michael Krauthammer","orcid":"https://orcid.org/0000-0002-4808-1845"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Krauthammer, Michael","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5093271970","display_name":"the EUSTAR collaborators","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"collaborators, the EUSTAR","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.936968,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":76,"max":82},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.917,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.917,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/interpretability","display_name":"Interpretability","score":0.84443796},{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.5776536},{"id":"https://openalex.org/keywords/generative-model","display_name":"Generative model","score":0.5666146}],"concepts":[{"id":"https://openalex.org/C2781067378","wikidata":"https://www.wikidata.org/wiki/Q17027399","display_name":"Interpretability","level":2,"score":0.84443796},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7004642},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.6900981},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6783557},{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.6035579},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.5776536},{"id":"https://openalex.org/C167966045","wikidata":"https://www.wikidata.org/wiki/Q5532625","display_name":"Generative model","level":3,"score":0.5666146},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.42255163},{"id":"https://openalex.org/C51167844","wikidata":"https://www.wikidata.org/wiki/Q4422623","display_name":"Latent variable","level":2,"score":0.41223276}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.08149","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2311.08149","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.08149","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4387506531","https://openalex.org/W4380551139","https://openalex.org/W4365211920","https://openalex.org/W4317695495","https://openalex.org/W4283803360","https://openalex.org/W4238433571","https://openalex.org/W3174044702","https://openalex.org/W3014948380","https://openalex.org/W2967848559","https://openalex.org/W2280377497"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"we":[3,57,79],"propose":[4],"a":[5,59],"deep":[6],"generative":[7,34,74],"time":[8,138],"series":[9,139],"approach":[10,61,75,149],"using":[11,67],"latent":[12,29,54,65,103],"temporal":[13,28,55,102],"processes":[14,104],"for":[15,62,108],"modeling":[16,151],"and":[17,45,112,120,134,167],"holistically":[18],"analyzing":[19],"complex":[20,164],"disease":[21,40,89,123,165],"trajectories.":[22],"We":[23,97,143],"aim":[24],"to":[25,83,162],"find":[26],"meaningful":[27],"representations":[30],"of":[31,52,87,136,147,157],"an":[32,43],"underlying":[33],"process":[35],"that":[36,99],"explain":[37],"the":[38,50,64,73,81,88,95,100,122,145,155],"observed":[39],"trajectories":[41,166],"in":[42,150],"interpretable":[44],"comprehensive":[46],"way.":[47],"To":[48],"enhance":[49],"interpretability":[51],"these":[53],"processes,":[56],"develop":[58],"semi-supervised":[60],"disentangling":[63],"space":[66],"established":[68],"medical":[69,77,92,170],"concepts.":[70],"By":[71],"combining":[72],"with":[76],"knowledge,":[78],"leverage":[80],"ability":[82],"discover":[84],"novel":[85],"aspects":[86],"while":[90],"integrating":[91],"concepts":[93],"into":[94,124],"model.":[96],"show":[98],"learned":[101],"can":[105],"be":[106],"utilized":[107],"further":[109],"data":[110],"analysis":[111],"clinical":[113],"hypothesis":[114],"testing,":[115],"including":[116,140],"finding":[117],"similar":[118],"patients":[119],"clustering":[121],"new":[125,169],"sub-types.":[126],"Moreover,":[127],"our":[128,148,158],"method":[129],"enables":[130],"personalized":[131],"online":[132],"monitoring":[133],"prediction":[135],"multivariate":[137],"uncertainty":[141],"quantification.":[142],"demonstrate":[144],"effectiveness":[146],"systemic":[152],"sclerosis,":[153],"showcasing":[154],"potential":[156],"machine":[159],"learning":[160],"model":[161],"capture":[163],"acquire":[168],"knowledge.":[171]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4388717138","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-04-23T23:45:31.148380","created_date":"2023-11-16"}