{"id":"https://openalex.org/W4388717701","doi":"https://doi.org/10.48550/arxiv.2311.07578","title":"A Metacognitive Approach to Out-of-Distribution Detection for Segmentation","display_name":"A Metacognitive Approach to Out-of-Distribution Detection for Segmentation","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4388717701","doi":"https://doi.org/10.48550/arxiv.2311.07578"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.07578","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2311.07578","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5019122434","display_name":"Meghna Gummadi","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gummadi, Meghna","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5030081726","display_name":"David Kent","orcid":"https://orcid.org/0000-0002-5418-3602"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kent, Cassandra","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5049609650","display_name":"Karl Schmeckpeper","orcid":"https://orcid.org/0000-0003-4989-2022"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Schmeckpeper, Karl","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5020691490","display_name":"Eric Eaton","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Eaton, Eric","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9903,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/segmentation-based-object-categorization","display_name":"Segmentation-based object categorization","score":0.434537},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.43368256}],"concepts":[{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.85702115},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7482772},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.69824547},{"id":"https://openalex.org/C65885262","wikidata":"https://www.wikidata.org/wiki/Q7429708","display_name":"Scale-space segmentation","level":4,"score":0.5694879},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.5479994},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.51538295},{"id":"https://openalex.org/C9679016","wikidata":"https://www.wikidata.org/wiki/Q1417473","display_name":"Principle of maximum entropy","level":2,"score":0.4674868},{"id":"https://openalex.org/C25694479","wikidata":"https://www.wikidata.org/wiki/Q7446278","display_name":"Segmentation-based object categorization","level":5,"score":0.434537},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.43368256},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.43348232},{"id":"https://openalex.org/C106301342","wikidata":"https://www.wikidata.org/wiki/Q4117933","display_name":"Entropy (arrow of time)","level":2,"score":0.42791867},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.39394113},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.36273396},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.07578","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2311.07578","pdf_url":"http://arxiv.org/pdf/2311.07578","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2311.07578","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.07578","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4205800335","https://openalex.org/W3144569342","https://openalex.org/W2945274617","https://openalex.org/W2551987074","https://openalex.org/W2386644571","https://openalex.org/W2372421320","https://openalex.org/W2371519352","https://openalex.org/W2185902295","https://openalex.org/W2103507220","https://openalex.org/W2055202857"],"abstract_inverted_index":{"Despite":[0],"outstanding":[1],"semantic":[2,135],"scene":[3],"segmentation":[4,48,56,89,136],"in":[5,21,37,64,78,123],"closed-worlds,":[6],"deep":[7],"neural":[8],"networks":[9],"segment":[10],"novel":[11,71],"instances":[12,122],"poorly,":[13],"which":[14,83],"is":[15],"required":[16],"for":[17,30,134],"autonomous":[18],"agents":[19],"acting":[20],"an":[22],"open":[23],"world.":[24],"To":[25],"improve":[26],"out-of-distribution":[27],"(OOD)":[28],"detection":[29,133],"segmentation,":[31],"we":[32,84],"introduce":[33],"a":[34,41,70,124],"metacognitive":[35,99],"approach":[36,68,117],"the":[38,55,98],"form":[39],"of":[40,73],"lightweight":[42],"module":[43],"that":[44],"leverages":[45],"entropy":[46,93],"measures,":[47],"predictions,":[49],"and":[50,59],"spatial":[51],"context":[52,79],"to":[53,86,105],"characterize":[54],"model's":[57],"uncertainty":[58],"detect":[60,120],"pixel-wise":[61],"OOD":[62,76,106,121,132],"data":[63,77,107],"real-time.":[65],"Additionally,":[66],"our":[67],"incorporates":[69],"method":[72],"generating":[74],"synthetic":[75],"with":[80,91,111],"in-distribution":[81],"data,":[82],"use":[85],"fine-tune":[87],"existing":[88],"models":[90],"maximum":[92],"training.":[94],"This":[95],"further":[96],"improves":[97],"module's":[100],"performance":[101,130],"without":[102],"requiring":[103],"access":[104],"while":[108],"enabling":[109],"compatibility":[110],"established":[112],"pre-trained":[113],"models.":[114],"Our":[115],"resulting":[116],"can":[118],"reliably":[119],"scene,":[125],"as":[126],"shown":[127],"by":[128],"state-of-the-art":[129],"on":[131],"benchmarks.":[137]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4388717701","counts_by_year":[],"updated_date":"2025-01-04T14:34:25.557931","created_date":"2023-11-16"}