{"id":"https://openalex.org/W4388685505","doi":"https://doi.org/10.48550/arxiv.2311.07311","title":"Do large language models and humans have similar behaviors in causal inference with script knowledge?","display_name":"Do large language models and humans have similar behaviors in causal inference with script knowledge?","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4388685505","doi":"https://doi.org/10.48550/arxiv.2311.07311"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.07311","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-sa","license_id":"https://openalex.org/licenses/cc-by-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2311.07311","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5006126857","display_name":"Xudong Hong","orcid":"https://orcid.org/0000-0001-6449-9654"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hong, Xudong","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047872130","display_name":"Margarita Ryzhova","orcid":"https://orcid.org/0000-0001-6354-3465"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ryzhova, Margarita","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5093264919","display_name":"Daniel Adrian Biondi","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Biondi, Daniel Adrian","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5023605306","display_name":"Vera Demberg","orcid":"https://orcid.org/0000-0002-8834-0020"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Demberg, Vera","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9895,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/causal-model","display_name":"Causal model","score":0.5089202},{"id":"https://openalex.org/keywords/causal-reasoning","display_name":"Causal reasoning","score":0.46195388},{"id":"https://openalex.org/keywords/code","display_name":"Code (set theory)","score":0.42833334}],"concepts":[{"id":"https://openalex.org/C554936623","wikidata":"https://www.wikidata.org/wiki/Q199657","display_name":"Reading (process)","level":2,"score":0.6681712},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.6027637},{"id":"https://openalex.org/C2779662365","wikidata":"https://www.wikidata.org/wiki/Q5416694","display_name":"Event (particle physics)","level":2,"score":0.5687361},{"id":"https://openalex.org/C158600405","wikidata":"https://www.wikidata.org/wiki/Q5054566","display_name":"Causal inference","level":2,"score":0.55711293},{"id":"https://openalex.org/C11671645","wikidata":"https://www.wikidata.org/wiki/Q5054567","display_name":"Causal model","level":2,"score":0.5089202},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.4984429},{"id":"https://openalex.org/C180747234","wikidata":"https://www.wikidata.org/wiki/Q23373","display_name":"Cognitive psychology","level":1,"score":0.4683546},{"id":"https://openalex.org/C115086926","wikidata":"https://www.wikidata.org/wiki/Q17004651","display_name":"Causal reasoning","level":3,"score":0.46195388},{"id":"https://openalex.org/C136197465","wikidata":"https://www.wikidata.org/wiki/Q1729295","display_name":"Variety (cybernetics)","level":2,"score":0.4391349},{"id":"https://openalex.org/C2776760102","wikidata":"https://www.wikidata.org/wiki/Q5139990","display_name":"Code (set theory)","level":3,"score":0.42833334},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.42516023},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.36810753},{"id":"https://openalex.org/C77805123","wikidata":"https://www.wikidata.org/wiki/Q161272","display_name":"Social psychology","level":1,"score":0.35606873},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.33658826},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.2560913},{"id":"https://openalex.org/C169900460","wikidata":"https://www.wikidata.org/wiki/Q2200417","display_name":"Cognition","level":2,"score":0.24192554},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.11792821},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.11299637},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.08827749},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.08382845},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C169760540","wikidata":"https://www.wikidata.org/wiki/Q207011","display_name":"Neuroscience","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.07311","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-sa","license_id":"https://openalex.org/licenses/cc-by-sa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2311.07311","pdf_url":"http://arxiv.org/pdf/2311.07311","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2311.07311","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.07311","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-sa","license_id":"https://openalex.org/licenses/cc-by-sa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Quality education","score":0.87,"id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4385893294","https://openalex.org/W4361865420","https://openalex.org/W4313422683","https://openalex.org/W4282978140","https://openalex.org/W3215034539","https://openalex.org/W3184771105","https://openalex.org/W3160160539","https://openalex.org/W2894915327","https://openalex.org/W2574301230","https://openalex.org/W2161504683"],"abstract_inverted_index":{"Recently,":[0],"large":[1],"pre-trained":[2],"language":[3,9],"models":[4,140,172],"(LLMs)":[5],"have":[6,193],"demonstrated":[7],"superior":[8],"understanding":[10],"abilities,":[11],"including":[12],"zero-shot":[13],"causal":[14,85],"reasoning.":[15],"However,":[16,99],"it":[17],"is":[18,56,107,181],"unclear":[19],"to":[20,27,134,136,175],"what":[21,137],"extent":[22,138],"their":[23,120],"capabilities":[24],"are":[25,204],"similar":[26,103],"human":[28,142,158],"ones.":[29],"We":[30,68,123],"here":[31],"study":[32],"the":[33,66,131,139,161],"processing":[34],"of":[35,65,128],"an":[36,62],"event":[37,49,54,117],"$B$":[38],"in":[39,61,160],"a":[40,47,71,126],"script-based":[41],"story,":[42],"which":[43,75],"causally":[44],"depends":[45],"on":[46,130],"previous":[48],"$A$.":[50],"In":[51],"our":[52],"manipulation,":[53],"$A$":[55],"stated,":[57],"negated,":[58],"or":[59,154],"omitted":[60],"earlier":[63],"section":[64],"text.":[67],"first":[69],"conducted":[70],"self-paced":[72],"reading":[73,82,100],"experiment,":[74],"showed":[76],"that":[77,112,147,177,190],"humans":[78,113],"exhibit":[79],"significantly":[80],"longer":[81],"times":[83,101],"when":[84,104],"conflicts":[86],"exist":[87],"($\\neg":[88],"A":[89,106,163,186],"\\rightarrow":[90,97,164,179,187],"B$)":[91],"than":[92,184],"under":[93],"logical":[94],"conditions":[95],"($A":[96],"B$).":[98],"remain":[102],"cause":[105],"not":[108],"explicitly":[109],"mentioned,":[110],"indicating":[111,189],"can":[114],"easily":[115],"infer":[116],"B":[118],"from":[119],"script":[121,196],"knowledge.":[122,197],"then":[124],"tested":[125],"variety":[127],"LLMs":[129,191],"same":[132],"data":[133,202],"check":[135],"replicate":[141],"behavior.":[143],"Our":[144,198],"experiments":[145],"show":[146],"1)":[148],"only":[149],"recent":[150],"LLMs,":[151],"like":[152],"GPT-3":[153],"Vicuna,":[155],"correlate":[156],"with":[157],"behavior":[159],"$\\neg":[162,185],"B$":[165,180],"condition.":[166],"2)":[167],"Despite":[168],"this":[169],"correlation,":[170],"all":[171],"still":[173,192],"fail":[174],"predict":[176],"$nil":[178],"less":[182],"surprising":[183],"B$,":[188],"difficulties":[194],"integrating":[195],"code":[199],"and":[200],"collected":[201],"set":[203],"available":[205],"at":[206],"https://github.com/tony-hong/causal-script.":[207]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4388685505","counts_by_year":[],"updated_date":"2025-01-06T13:01:02.359688","created_date":"2023-11-15"}