{"id":"https://openalex.org/W4388651114","doi":"https://doi.org/10.48550/arxiv.2311.06231","title":"Learning Human Action Recognition Representations Without Real Humans","display_name":"Learning Human Action Recognition Representations Without Real Humans","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4388651114","doi":"https://doi.org/10.48550/arxiv.2311.06231"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.06231","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2311.06231","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5002252216","display_name":"Howard Zhong","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zhong, Howard","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102893907","display_name":"Samarth Mishra","orcid":"https://orcid.org/0000-0003-3425-2647"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Mishra, Samarth","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100454683","display_name":"Donghyun Kim","orcid":"https://orcid.org/0000-0002-7132-4454"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kim, Donghyun","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5074900529","display_name":"SouYoung Jin","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jin, SouYoung","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5049734237","display_name":"Rameswar Panda","orcid":"https://orcid.org/0000-0003-4359-2475"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Panda, Rameswar","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5011795407","display_name":"Hilde Kuehne","orcid":"https://orcid.org/0000-0003-1079-4441"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kuehne, Hilde","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5020676344","display_name":"Leonid Karlinsky","orcid":"https://orcid.org/0000-0003-2524-2068"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Karlinsky, Leonid","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5048704387","display_name":"Venkatesh Saligrama","orcid":"https://orcid.org/0000-0002-0675-2268"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Saligrama, Venkatesh","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021257546","display_name":"Aude Oliva","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Oliva, Aude","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5052325109","display_name":"Rog\u00e9rio Feris","orcid":"https://orcid.org/0000-0001-6399-0679"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Feris, Rogerio","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.700164,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":65,"max":76},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11636","display_name":"Artificial Intelligence in Healthcare and Education","score":0.9657,"subfield":{"id":"https://openalex.org/subfields/2718","display_name":"Health Informatics"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9597,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.58846515},{"id":"https://openalex.org/keywords/benchmarking","display_name":"Benchmarking","score":0.5578749},{"id":"https://openalex.org/keywords/activity-recognition","display_name":"Activity Recognition","score":0.52378315},{"id":"https://openalex.org/keywords/action-recognition","display_name":"Action Recognition","score":0.47240514},{"id":"https://openalex.org/keywords/code","display_name":"Code (set theory)","score":0.4529778},{"id":"https://openalex.org/keywords/upsampling","display_name":"Upsampling","score":0.43757072},{"id":"https://openalex.org/keywords/data-set","display_name":"Data set","score":0.42256397}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.84825337},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.58846515},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.58604884},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5738673},{"id":"https://openalex.org/C86251818","wikidata":"https://www.wikidata.org/wiki/Q816754","display_name":"Benchmarking","level":2,"score":0.5578749},{"id":"https://openalex.org/C2780791683","wikidata":"https://www.wikidata.org/wiki/Q846785","display_name":"Action (physics)","level":2,"score":0.5550657},{"id":"https://openalex.org/C121687571","wikidata":"https://www.wikidata.org/wiki/Q4677630","display_name":"Activity recognition","level":2,"score":0.52378315},{"id":"https://openalex.org/C2776207758","wikidata":"https://www.wikidata.org/wiki/Q5303302","display_name":"Downstream (manufacturing)","level":2,"score":0.48225147},{"id":"https://openalex.org/C2987834672","wikidata":"https://www.wikidata.org/wiki/Q4677630","display_name":"Action recognition","level":3,"score":0.47240514},{"id":"https://openalex.org/C2776760102","wikidata":"https://www.wikidata.org/wiki/Q5139990","display_name":"Code (set theory)","level":3,"score":0.4529778},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.45172942},{"id":"https://openalex.org/C110384440","wikidata":"https://www.wikidata.org/wiki/Q1143270","display_name":"Upsampling","level":3,"score":0.43757072},{"id":"https://openalex.org/C58489278","wikidata":"https://www.wikidata.org/wiki/Q1172284","display_name":"Data set","level":2,"score":0.42256397},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.1172373},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C162853370","wikidata":"https://www.wikidata.org/wiki/Q39809","display_name":"Marketing","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.06231","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2311.06231","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.06231","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/5","score":0.45,"display_name":"Gender equality"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W435179959","https://openalex.org/W4238897586","https://openalex.org/W3181401746","https://openalex.org/W2982423860","https://openalex.org/W2619091065","https://openalex.org/W2291782699","https://openalex.org/W2284465472","https://openalex.org/W2059640416","https://openalex.org/W1975325338","https://openalex.org/W1490753184"],"abstract_inverted_index":{"Pre-training":[0],"on":[1,14,65,73,151,203],"massive":[2],"video":[3,21],"datasets":[4,22],"has":[5,52,83],"become":[6],"essential":[7],"to":[8,34,54,80,138,154,173,189],"achieve":[9],"high":[10],"action":[11,104,160,200],"recognition":[12,105,161,201],"performance":[13,194],"smaller":[15],"downstream":[16,81,159,204],"datasets.":[17],"However,":[18],"most":[19],"large-scale":[20],"contain":[23],"images":[24],"of":[25,76,147,158],"people":[26],"and":[27,37,132,178,191,198,210,215],"hence":[28],"are":[29,217],"accompanied":[30],"with":[31,106,129],"issues":[32],"related":[33],"privacy,":[35],"ethics,":[36],"data":[38,107,134,153,177],"protection,":[39],"often":[40],"preventing":[41],"them":[42],"from":[43],"being":[44],"publicly":[45],"shared":[46],"for":[47,102,119,206],"reproducible":[48],"research.":[49],"Existing":[50],"work":[51],"attempted":[53],"alleviate":[55],"these":[56],"problems":[57],"by":[58,93,187],"blurring":[59],"faces,":[60],"downsampling":[61],"videos,":[62],"or":[63],"training":[64],"synthetic":[66,133,176],"data.":[67,181],"On":[68],"the":[69,74,96,120,145,148,193],"other":[70],"hand,":[71],"analysis":[72],"transferability":[75,146],"privacy-preserving":[77],"pre-trained":[78],"models":[79,101,216],"tasks":[82],"been":[84],"limited.":[85],"In":[86],"this":[87,91,115,152],"work,":[88],"we":[89,99,117,164],"study":[90],"problem":[92],"first":[94,121],"asking":[95],"question:":[97],"can":[98],"pre-train":[100,139],"human":[103,197],"that":[108,125],"does":[109],"not":[110],"include":[111],"real":[112,180],"humans?":[113],"To":[114],"end,":[116],"present,":[118],"time,":[122],"a":[123,140,155,166],"benchmark":[124],"leverages":[126],"real-world":[127],"videos":[128],"humans":[130,137],"removed":[131],"containing":[135],"virtual":[136],"model.":[141],"We":[142],"then":[143],"evaluate":[144],"representation":[149],"learned":[150],"diverse":[156],"set":[157],"benchmarks.":[162],"Furthermore,":[163],"propose":[165],"novel":[167],"pre-training":[168],"strategy,":[169],"called":[170],"Privacy-Preserving":[171],"MAE-Align,":[172],"effectively":[174],"combine":[175],"human-removed":[179],"Our":[182,212],"approach":[183],"outperforms":[184],"previous":[185],"baselines":[186],"up":[188],"5%":[190],"closes":[192],"gap":[195],"between":[196],"no-human":[199],"representations":[202],"tasks,":[205],"both":[207],"linear":[208],"probing":[209],"fine-tuning.":[211],"benchmark,":[213],"code,":[214],"available":[218],"at":[219],"https://github.com/howardzh01/PPMA":[220],".":[221]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4388651114","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-04-23T17:16:44.310159","created_date":"2023-11-14"}