{"id":"https://openalex.org/W4388514345","doi":"https://doi.org/10.48550/arxiv.2311.03537","title":"Leveraging point annotations in segmentation learning with boundary loss","display_name":"Leveraging point annotations in segmentation learning with boundary loss","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4388514345","doi":"https://doi.org/10.48550/arxiv.2311.03537"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.03537","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2311.03537","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5064888525","display_name":"Eva Breznik","orcid":"https://orcid.org/0000-0003-3147-5626"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Breznik, Eva","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5057382610","display_name":"Hoel Kervadec","orcid":"https://orcid.org/0000-0002-6786-7042"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kervadec, Hoel","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5091534378","display_name":"Filip Malmberg","orcid":"https://orcid.org/0000-0002-4980-2755"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Malmberg, Filip","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075154897","display_name":"Joel Kullberg","orcid":"https://orcid.org/0000-0001-8205-7569"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kullberg, Joel","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5023269056","display_name":"H\u00e5kan \u00c5hlstr\u00f6m","orcid":"https://orcid.org/0000-0002-8701-969X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ahlstr\u00f6m, H\u00e5kan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5023677285","display_name":"Marleen de Bruijne","orcid":"https://orcid.org/0000-0002-6328-902X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"de Bruijne, Marleen","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5018135860","display_name":"Robin Strand","orcid":"https://orcid.org/0000-0001-7764-1787"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Strand, Robin","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":65},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9917,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/ground-truth","display_name":"Ground truth","score":0.7036145},{"id":"https://openalex.org/keywords/simplicity","display_name":"Simplicity","score":0.43465978}],"concepts":[{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.85760164},{"id":"https://openalex.org/C64869954","wikidata":"https://www.wikidata.org/wiki/Q1859747","display_name":"False positive paradox","level":2,"score":0.7659922},{"id":"https://openalex.org/C62354387","wikidata":"https://www.wikidata.org/wiki/Q875399","display_name":"Boundary (topology)","level":2,"score":0.71866417},{"id":"https://openalex.org/C146849305","wikidata":"https://www.wikidata.org/wiki/Q370766","display_name":"Ground truth","level":2,"score":0.7036145},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6500758},{"id":"https://openalex.org/C28719098","wikidata":"https://www.wikidata.org/wiki/Q44946","display_name":"Point (geometry)","level":2,"score":0.5428117},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5072355},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.49936795},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.43532732},{"id":"https://openalex.org/C2776372474","wikidata":"https://www.wikidata.org/wiki/Q508291","display_name":"Simplicity","level":2,"score":0.43465978},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.384453},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.20685229},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.03537","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2311.03537","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2311.03537","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.44,"display_name":"Peace, justice, and strong institutions","id":"https://metadata.un.org/sdg/16"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4301122218","https://openalex.org/W3187599676","https://openalex.org/W2737356002","https://openalex.org/W2374150061","https://openalex.org/W2369703001","https://openalex.org/W2368019753","https://openalex.org/W2333930193","https://openalex.org/W2246241526","https://openalex.org/W2081340182","https://openalex.org/W1997160662"],"abstract_inverted_index":{"This":[0,145],"paper":[1],"investigates":[2],"the":[3,18,26,29,33,46,55,66,94,101,143,196],"combination":[4],"of":[5,62,86],"intensity-based":[6],"distance":[7],"maps":[8],"with":[9,137,208],"boundary":[10,19,102],"loss":[11,20,103],"for":[12,42,82,99,113,212],"point-supervised":[13],"semantic":[14],"segmentation.":[15],"By":[16],"design":[17],"imposes":[21],"a":[22,59,83,90],"stronger":[23],"penalty":[24],"on":[25,166,201,206],"false":[27,63,87],"positives":[28,64,88],"farther":[30],"away":[31],"from":[32],"object":[34,57],"they":[35],"occur.":[36],"Hence":[37],"it":[38,194,204],"is":[39,70,129,216],"intuitively":[40],"inappropriate":[41],"weak":[43,67,106],"supervision,":[44],"where":[45],"ground":[47,68],"truth":[48],"label":[49],"may":[50,77],"be":[51],"much":[52],"smaller":[53],"than":[54,152],"actual":[56],"and":[58,160,173,183,200],"certain":[60,84],"amount":[61,85],"(w.r.t.":[65],"truth)":[69],"actually":[71],"desirable.":[72],"Using":[73],"intensity-aware":[74],"distances":[75],"instead":[76],"alleviate":[78],"this":[79,186],"drawback,":[80],"allowing":[81],"without":[89],"significant":[91],"increase":[92],"to":[93,157],"training":[95],"loss.":[96],"The":[97,210],"motivation":[98],"applying":[100],"directly":[104],"under":[105],"supervision":[107,187],"lies":[108],"in":[109,120,133,142],"its":[110,158],"great":[111,190],"success":[112],"fully":[114],"supervised":[115,140],"segmentation":[116],"tasks,":[117],"but":[118],"also":[119,147],"not":[121],"requiring":[122],"extra":[123],"priors":[124],"or":[125],"outside":[126],"information":[127],"that":[128,185],"usually":[130],"required":[131],"--":[132,136],"some":[134],"form":[135],"existing":[138,153],"weakly":[139],"methods":[141],"literature.":[144],"formulation":[146],"remains":[148],"potentially":[149],"more":[150],"attractive":[151],"CRF-based":[154],"regularizers,":[155],"due":[156],"simplicity":[159],"computational":[161],"efficiency.":[162],"We":[163],"perform":[164],"experiments":[165,215],"two":[167],"multi-class":[168],"datasets;":[169],"ACDC":[170,193],"(heart":[171],"segmentation)":[172],"POEM":[174,202],"(whole-body":[175],"abdominal":[176],"organ":[177],"segmentation).":[178],"Preliminary":[179],"results":[180],"are":[181],"encouraging":[182],"show":[184],"strategy":[188],"has":[189],"potential.":[191],"On":[192],"outperforms":[195],"CRF-loss":[197],"based":[198],"approach,":[199],"data":[203],"performs":[205],"par":[207],"it.":[209],"code":[211],"all":[213],"our":[214],"openly":[217],"available.":[218]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4388514345","counts_by_year":[],"updated_date":"2025-04-08T23:49:52.592168","created_date":"2023-11-09"}