{"id":"https://openalex.org/W4387635296","doi":"https://doi.org/10.48550/arxiv.2310.08130","title":"Fine-grained Conversational Decoding via Isotropic and Proximal Search","display_name":"Fine-grained Conversational Decoding via Isotropic and Proximal Search","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4387635296","doi":"https://doi.org/10.48550/arxiv.2310.08130"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2310.08130","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2310.08130","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101064995","display_name":"Yuxuan Yao","orcid":"https://orcid.org/0009-0000-3926-6912"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Yao, Yuxuan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5034126390","display_name":"Han Wu","orcid":"https://orcid.org/0000-0002-8008-064X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wu, Han","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055068912","display_name":"Qiling Xu","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xu, Qiling","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5035185924","display_name":"Linqi Song","orcid":"https://orcid.org/0000-0003-2756-4984"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Song, Linqi","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":66},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12031","display_name":"Speech and dialogue systems","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12128","display_name":"AI in Service Interactions","score":0.9855,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.48312637}],"concepts":[{"id":"https://openalex.org/C57273362","wikidata":"https://www.wikidata.org/wiki/Q576722","display_name":"Decoding methods","level":2,"score":0.90360916},{"id":"https://openalex.org/C184050105","wikidata":"https://www.wikidata.org/wiki/Q273163","display_name":"Isotropy","level":2,"score":0.7346685},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6962726},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.6659672},{"id":"https://openalex.org/C125411270","wikidata":"https://www.wikidata.org/wiki/Q18653","display_name":"Encoding (memory)","level":2,"score":0.55498445},{"id":"https://openalex.org/C2779808786","wikidata":"https://www.wikidata.org/wiki/Q6664603","display_name":"Locality","level":2,"score":0.4862379},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.48312637},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.4564642},{"id":"https://openalex.org/C2778572836","wikidata":"https://www.wikidata.org/wiki/Q380933","display_name":"Space (punctuation)","level":2,"score":0.4273008},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4087457},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.36169034},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.3600756},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.33896315},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.15898043},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.12786674},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.11588356},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.07282364},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.05694884},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2310.08130","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2310.08130","pdf_url":"http://arxiv.org/pdf/2310.08130","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2310.08130","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2310.08130","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10","score":0.52},{"display_name":"Peace, justice, and strong institutions","id":"https://metadata.un.org/sdg/16","score":0.5}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W55249799","https://openalex.org/W2794789911","https://openalex.org/W2389120450","https://openalex.org/W2379365082","https://openalex.org/W2370747590","https://openalex.org/W2369260257","https://openalex.org/W2368824897","https://openalex.org/W2030109976","https://openalex.org/W1910862367","https://openalex.org/W1508050556"],"abstract_inverted_index":{"General-purpose":[0],"text":[1],"decoding":[2,26,53,86],"approaches":[3],"are":[4,28],"usually":[5],"adopted":[6],"for":[7],"dialogue":[8,37,90],"response":[9],"generation.":[10],"Although":[11],"the":[12,15,42,67,77,89,104],"quality":[13],"of":[14,44,106],"generated":[16],"responses":[17],"can":[18],"be":[19],"improved":[20],"with":[21],"dialogue-specific":[22],"encoding":[23],"methods,":[24],"conversational":[25,52],"methods":[27],"still":[29,71],"under-explored.":[30],"Inspired":[31],"by":[32],"\\citet{wu2023learning}":[33],"that":[34,81],"a":[35,50],"good":[36],"feature":[38],"space":[39],"should":[40],"follow":[41],"rules":[43],"locality":[45],"and":[46,57,74,95],"isotropy,":[47],"we":[48],"present":[49],"fine-grained":[51],"method,":[54],"termed":[55],"\\textit{isotropic":[56],"proximal":[58],"search":[59],"(IPS)}.":[60],"Our":[61],"method":[62],"is":[63],"designed":[64],"to":[65],"generate":[66],"semantic-concentrated":[68],"response,":[69],"while":[70],"maintaining":[72],"informativeness":[73],"discrimination":[75],"against":[76],"context.":[78],"Experiments":[79],"show":[80],"our":[82,107],"approach":[83],"outperforms":[84],"existing":[85],"strategies":[87],"in":[88],"field":[91],"across":[92],"both":[93],"automatic":[94],"human":[96],"evaluation":[97],"metrics.":[98],"More":[99],"in-depth":[100],"analyses":[101],"further":[102],"confirm":[103],"effectiveness":[105],"approach.":[108]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4387635296","counts_by_year":[],"updated_date":"2025-02-23T20:59:01.823674","created_date":"2023-10-14"}