{"id":"https://openalex.org/W4387560871","doi":"https://doi.org/10.48550/arxiv.2310.06251","title":"Deep Learning: A Tutorial","display_name":"Deep Learning: A Tutorial","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4387560871","doi":"https://doi.org/10.48550/arxiv.2310.06251"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2310.06251","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2310.06251","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5108621713","display_name":"Nick Polson","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Polson, Nick","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5012467860","display_name":"Vadim Sokolov","orcid":"https://orcid.org/0000-0002-6618-2965"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sokolov, Vadim","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":67,"citation_normalized_percentile":{"value":0.99995,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9084,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9084,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9039,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.6854566},{"id":"https://openalex.org/keywords/statistical-learning","display_name":"Statistical Learning","score":0.6182064}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7322835},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.6857413},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.6854566},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.67188424},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6662843},{"id":"https://openalex.org/C2982736386","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Statistical learning","level":2,"score":0.6182064},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.56926113},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.53716516},{"id":"https://openalex.org/C92757383","wikidata":"https://www.wikidata.org/wiki/Q382497","display_name":"Affine transformation","level":2,"score":0.525692},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.4520842},{"id":"https://openalex.org/C114289077","wikidata":"https://www.wikidata.org/wiki/Q3284399","display_name":"Statistical model","level":2,"score":0.44370306},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.1286464},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2310.06251","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2310.06251","pdf_url":"http://arxiv.org/pdf/2310.06251","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2310.06251","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2310.06251","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Quality education","score":0.51,"id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4387878894","https://openalex.org/W4384820324","https://openalex.org/W4323567107","https://openalex.org/W4312114163","https://openalex.org/W3136891595","https://openalex.org/W2535030201","https://openalex.org/W2494523064","https://openalex.org/W2345647014","https://openalex.org/W2201192772","https://openalex.org/W1964819397"],"abstract_inverted_index":{"Our":[0],"goal":[1],"is":[2],"to":[3,25,37,48,55],"provide":[4,12,38],"a":[5,39,49],"review":[6],"of":[7,33,45,51,66],"deep":[8,29],"learning":[9,30],"methods":[10,59],"which":[11,56],"insight":[13],"into":[14],"structured":[15],"high-dimensional":[16],"data.":[17],"Rather":[18],"than":[19],"using":[20],"shallow":[21],"additive":[22],"architectures":[23],"common":[24],"most":[26],"statistical":[27,58],"models,":[28],"uses":[31],"layers":[32,44],"semi-affine":[34],"input":[35],"transformations":[36,46],"predictive":[40],"rule.":[41],"Applying":[42],"these":[43],"leads":[47],"set":[50],"attributes":[52],"(or,":[53],"features)":[54],"probabilistic":[57],"can":[60,69],"be":[61,70],"applied.":[62],"Thus,":[63],"the":[64,83],"best":[65],"both":[67],"worlds":[68],"achieved:":[71],"scalable":[72],"prediction":[73],"rules":[74],"fortified":[75],"with":[76],"uncertainty":[77],"quantification,":[78],"where":[79],"sparse":[80],"regularization":[81],"finds":[82],"features.":[84]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4387560871","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":6},{"year":2021,"cited_by_count":7},{"year":2020,"cited_by_count":3},{"year":2019,"cited_by_count":10},{"year":2018,"cited_by_count":10},{"year":2017,"cited_by_count":11},{"year":2016,"cited_by_count":6},{"year":2015,"cited_by_count":7},{"year":2014,"cited_by_count":1}],"updated_date":"2024-12-15T16:29:59.355486","created_date":"2023-10-12"}