{"id":"https://openalex.org/W4387156651","doi":"https://doi.org/10.48550/arxiv.2309.15060","title":"Constrained Deep Reinforcement Learning for Fronthaul Compression Optimization","display_name":"Constrained Deep Reinforcement Learning for Fronthaul Compression Optimization","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4387156651","doi":"https://doi.org/10.48550/arxiv.2309.15060"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.15060","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2309.15060","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5092964185","display_name":"Axel Gr\u00f6nland","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gr\u00f6nland, Axel","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101696896","display_name":"Alessio Russo","orcid":"https://orcid.org/0000-0001-9083-5260"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Russo, Alessio","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5082148015","display_name":"Yassir Jedra","orcid":"https://orcid.org/0000-0002-4403-1066"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jedra, Yassir","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5005331942","display_name":"Bleron Klaiqi","orcid":"https://orcid.org/0000-0001-8406-1270"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Klaiqi, Bleron","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5000521258","display_name":"Xavier Gelabert","orcid":"https://orcid.org/0000-0003-1343-1312"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gelabert, Xavier","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10148","display_name":"Advanced MIMO Systems Optimization","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10148","display_name":"Advanced MIMO Systems Optimization","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11392","display_name":"Energy Harvesting in Wireless Networks","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10767","display_name":"Advanced Photonic Communication Systems","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/interpretability","display_name":"Interpretability","score":0.6826262}],"concepts":[{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.8250579},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7142784},{"id":"https://openalex.org/C2781067378","wikidata":"https://www.wikidata.org/wiki/Q17027399","display_name":"Interpretability","level":2,"score":0.6826262},{"id":"https://openalex.org/C77618280","wikidata":"https://www.wikidata.org/wiki/Q1155772","display_name":"Scheme (mathematics)","level":2,"score":0.48422527},{"id":"https://openalex.org/C149810388","wikidata":"https://www.wikidata.org/wiki/Q5374873","display_name":"Emulation","level":2,"score":0.44849634},{"id":"https://openalex.org/C158379750","wikidata":"https://www.wikidata.org/wiki/Q214111","display_name":"Network packet","level":2,"score":0.43695378},{"id":"https://openalex.org/C2780233690","wikidata":"https://www.wikidata.org/wiki/Q535347","display_name":"Transparency (behavior)","level":2,"score":0.42398548},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4139368},{"id":"https://openalex.org/C120314980","wikidata":"https://www.wikidata.org/wiki/Q180634","display_name":"Distributed computing","level":1,"score":0.3997826},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.38951522},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.31670225},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.07922298},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C50522688","wikidata":"https://www.wikidata.org/wiki/Q189833","display_name":"Economic growth","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.15060","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2309.15060","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.15060","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4390569940","https://openalex.org/W4388422664","https://openalex.org/W4361193272","https://openalex.org/W4312407344","https://openalex.org/W4310278675","https://openalex.org/W4226258012","https://openalex.org/W2963326959","https://openalex.org/W2905433371","https://openalex.org/W2894289927","https://openalex.org/W2888392564"],"abstract_inverted_index":{"In":[0,57],"the":[1,12,32,41,118],"Centralized-Radio":[2],"Access":[3],"Network":[4],"(C-RAN)":[5],"architecture,":[6],"functions":[7],"can":[8,19,109],"be":[9],"placed":[10],"in":[11,100,126],"central":[13],"or":[14],"distributed":[15],"locations.":[16],"This":[17],"architecture":[18],"offer":[20],"higher":[21],"capacity":[22],"and":[23,80,92,120],"cost":[24],"savings":[25],"but":[26],"also":[27],"puts":[28],"strict":[29],"requirements":[30],"on":[31],"fronthaul":[33],"(FH).":[34],"Adaptive":[35],"FH":[36,46,55,78,127],"compression":[37,42,64,114],"schemes":[38],"that":[39,106],"adapt":[40],"amount":[43],"to":[44,51,130],"varying":[45],"traffic":[47],"are":[48],"promising":[49],"approaches":[50],"deal":[52],"with":[53],"stringent":[54],"requirements.":[56],"this":[58,85],"work,":[59],"we":[60],"design":[61],"such":[62],"a":[63,67,122,131],"scheme":[65,115],"using":[66],"model-free":[68],"off":[69],"policy":[70],"deep":[71],"reinforcement":[72],"learning":[73],"algorithm":[74,86,108],"which":[75,94],"accounts":[76],"for":[77,89,97],"latency":[79],"packet":[81],"loss":[82],"constraints.":[83],"Furthermore,":[84],"is":[87,95],"designed":[88],"model":[90],"transparency":[91],"interpretability":[93],"crucial":[96],"AI":[98],"trustworthiness":[99],"performance":[101],"critical":[102],"domains.":[103],"We":[104],"show":[105],"our":[107],"successfully":[110],"choose":[111],"an":[112],"appropriate":[113],"while":[116],"satisfying":[117],"constraints":[119],"exhibits":[121],"roughly":[123],"70\\%":[124],"increase":[125],"utilization":[128],"compared":[129],"reference":[132],"scheme.":[133]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4387156651","counts_by_year":[],"updated_date":"2025-01-06T06:30:06.454283","created_date":"2023-09-30"}