{"id":"https://openalex.org/W4387074695","doi":"https://doi.org/10.48550/arxiv.2309.13069","title":"Machine Learning Technique Based Fake News Detection","display_name":"Machine Learning Technique Based Fake News Detection","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4387074695","doi":"https://doi.org/10.48550/arxiv.2309.13069"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.13069","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2309.13069","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5041318308","display_name":"Biplob Kumar Sutradhar","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sutradhar, Biplob Kumar","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5092949848","display_name":"Md. Zonaid","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zonaid, Md.","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067934155","display_name":"Nushrat Jahan Ria","orcid":"https://orcid.org/0000-0001-5340-8673"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ria, Nushrat Jahan","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5026451933","display_name":"Sheak Rashed Haider Noori","orcid":"https://orcid.org/0000-0001-6937-6039"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Noori, Sheak Rashed Haider","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":66},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11147","display_name":"Misinformation and Its Impacts","score":0.9962,"subfield":{"id":"https://openalex.org/subfields/3312","display_name":"Sociology and Political Science"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11147","display_name":"Misinformation and Its Impacts","score":0.9962,"subfield":{"id":"https://openalex.org/subfields/3312","display_name":"Sociology and Political Science"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11644","display_name":"Spam and Phishing Detection","score":0.9805,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/stochastic-gradient-descent","display_name":"Stochastic Gradient Descent","score":0.47231862}],"concepts":[{"id":"https://openalex.org/C52001869","wikidata":"https://www.wikidata.org/wiki/Q812530","display_name":"Naive Bayes classifier","level":3,"score":0.80286866},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.69851685},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6878381},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.60450083},{"id":"https://openalex.org/C151956035","wikidata":"https://www.wikidata.org/wiki/Q1132755","display_name":"Logistic regression","level":2,"score":0.5936003},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.5317197},{"id":"https://openalex.org/C206688291","wikidata":"https://www.wikidata.org/wiki/Q7617819","display_name":"Stochastic gradient descent","level":3,"score":0.47231862},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4139},{"id":"https://openalex.org/C207201462","wikidata":"https://www.wikidata.org/wiki/Q182505","display_name":"Bayes' theorem","level":3,"score":0.4109765},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.32961023},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.15769988},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.12964791}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.13069","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2309.13069","pdf_url":"http://arxiv.org/pdf/2309.13069","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2309.13069","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.13069","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.51,"id":"https://metadata.un.org/sdg/4","display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4385609682","https://openalex.org/W4375867731","https://openalex.org/W4220802396","https://openalex.org/W2726838704","https://openalex.org/W2611989081","https://openalex.org/W2537862391","https://openalex.org/W2417174640","https://openalex.org/W2394466068","https://openalex.org/W2393473353","https://openalex.org/W1987683558"],"abstract_inverted_index":{"False":[0],"news":[1,42,86,91],"has":[2,17],"received":[3],"attention":[4],"from":[5,93],"both":[6],"the":[7,11,18,27,31,63,66,89,100,110],"general":[8],"public":[9,22,34],"and":[10,84,105,129,154],"scholarly":[12],"world.":[13],"Such":[14],"false":[15],"information":[16,59],"ability":[19],"to":[20,29,54,81,102],"affect":[21],"perception,":[23],"giving":[24],"nefarious":[25],"groups":[26],"chance":[28],"influence":[30],"results":[32],"of":[33,65,158,161],"events":[35],"like":[36],"elections.":[37],"Anyone":[38],"can":[39],"share":[40],"fake":[41,83],"or":[43,47,53,139],"facts":[44],"about":[45],"anyone":[46],"anything":[48],"for":[49],"their":[50],"personal":[51],"gain":[52],"cause":[55],"someone":[56],"trouble.":[57],"Also,":[58],"varies":[60],"depending":[61],"on":[62],"part":[64],"world":[67],"it":[68],"is":[69],"shared":[70],"on.":[71],"Thus,":[72],"in":[73],"this":[74],"paper,":[75],"we":[76,143],"have":[77,98,144],"trained":[78],"a":[79],"model":[80],"classify":[82],"true":[85],"by":[87,108],"utilizing":[88],"1876":[90],"data":[92,101],"our":[94,146],"collected":[95],"dataset.":[96],"We":[97],"preprocessed":[99],"get":[103],"clean":[104],"filtered":[106],"texts":[107],"following":[109],"Natural":[111],"Language":[112],"Processing":[113],"approaches.":[114],"Our":[115],"research":[116],"conducts":[117],"3":[118],"popular":[119],"Machine":[120],"Learning":[121,132],"(Stochastic":[122],"gradient":[123],"descent,":[124],"Na\\\"ive":[125],"Bayes,":[126],"Logistic":[127],"Regression,)":[128],"2":[130],"Deep":[131],"(Long-Short":[133],"Term":[134],"Memory,":[135],"ASGD":[136],"Weight-Dropped":[137],"LSTM,":[138],"AWD-LSTM)":[140],"algorithms.":[141],"After":[142],"found":[145],"best":[147],"Naive":[148],"Bayes":[149],"classifier":[150],"with":[151],"56%":[152],"accuracy":[153],"an":[155,159],"F1-macro":[156],"score":[157],"average":[160],"32%.":[162]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4387074695","counts_by_year":[],"updated_date":"2025-02-23T00:57:13.843526","created_date":"2023-09-27"}