{"id":"https://openalex.org/W4386942856","doi":"https://doi.org/10.48550/arxiv.2309.11086","title":"From Unstable Contacts to Stable Control: A Deep Learning Paradigm for HD-sEMG in Neurorobotics","display_name":"From Unstable Contacts to Stable Control: A Deep Learning Paradigm for HD-sEMG in Neurorobotics","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4386942856","doi":"https://doi.org/10.48550/arxiv.2309.11086"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.11086","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2309.11086","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5022423482","display_name":"Eion Tyacke","orcid":"https://orcid.org/0000-0002-1666-5790"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tyacke, Eion","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5046207538","display_name":"Kunal Gupta","orcid":"https://orcid.org/0000-0001-8202-2120"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gupta, Kunal","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101916858","display_name":"Jay Patel","orcid":"https://orcid.org/0000-0002-0644-672X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Patel, Jay","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5114084301","display_name":"Raghav Katoch","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Katoch, Raghav","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5057991229","display_name":"S. Farokh Atashzar","orcid":"https://orcid.org/0000-0001-8495-8440"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Atashzar, S. Farokh","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.810187,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":65,"max":76},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10784","display_name":"Muscle activation and electromyography studies","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10784","display_name":"Muscle activation and electromyography studies","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10338","display_name":"Advanced Sensor and Energy Harvesting Materials","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10914","display_name":"Tactile and Sensory Interactions","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/dropout","display_name":"Dropout (neural networks)","score":0.7986351},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.59204483}],"concepts":[{"id":"https://openalex.org/C2776145597","wikidata":"https://www.wikidata.org/wiki/Q25339462","display_name":"Dropout (neural networks)","level":2,"score":0.7986351},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6181656},{"id":"https://openalex.org/C150594956","wikidata":"https://www.wikidata.org/wiki/Q1334829","display_name":"Wearable computer","level":2,"score":0.61582184},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.59204483},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.57608604},{"id":"https://openalex.org/C57273362","wikidata":"https://www.wikidata.org/wiki/Q576722","display_name":"Decoding methods","level":2,"score":0.5387514},{"id":"https://openalex.org/C159437735","wikidata":"https://www.wikidata.org/wiki/Q1519524","display_name":"Gesture recognition","level":3,"score":0.53194815},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5195615},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5166529},{"id":"https://openalex.org/C207347870","wikidata":"https://www.wikidata.org/wiki/Q371174","display_name":"Gesture","level":2,"score":0.35352367},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3460262},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.33978805},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.24407998},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.22006437},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.11086","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2309.11086","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.11086","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4322710567","https://openalex.org/W3204639664","https://openalex.org/W3147379364","https://openalex.org/W2989699735","https://openalex.org/W2970836791","https://openalex.org/W2902873204","https://openalex.org/W2805039731","https://openalex.org/W2185750513","https://openalex.org/W2026258298","https://openalex.org/W2010878661"],"abstract_inverted_index":{"In":[0],"the":[1,30,95,103,126,147,187,191],"past":[2],"decade,":[3],"there":[4],"has":[5],"been":[6],"significant":[7],"advancement":[8],"in":[9,82,125],"designing":[10],"wearable":[11,127],"neural":[12],"interfaces":[13,22,128],"for":[14,106,118],"controlling":[15],"neurorobotic":[16,107],"systems,":[17],"particularly":[18],"bionic":[19],"limbs.":[20],"These":[21],"function":[23],"by":[24,47],"decoding":[25,43],"signals":[26],"captured":[27],"non-invasively":[28],"from":[29],"skin's":[31],"surface.":[32],"Portable":[33],"high-density":[34],"surface":[35],"electromyography":[36],"(HD-sEMG)":[37],"modules":[38,101],"combined":[39],"with":[40,181],"deep":[41],"learning":[42],"have":[44],"attracted":[45],"interest":[46],"achieving":[48],"excellent":[49],"gesture":[50],"prediction":[51],"and":[52,58,66,91,97,154,183,190],"myoelectric":[53],"control":[54],"of":[55,99,129],"prosthetic":[56],"systems":[57],"neurorobots.":[59,130],"However,":[60],"factors":[61],"like":[62],"pixel-shape":[63],"electrode":[64,75],"size":[65],"unstable":[67],"skin":[68,92],"contact":[69],"make":[70],"HD-sEMG":[71,119],"susceptible":[72],"to":[73,144,149,158],"pixel":[74],"drops.":[76],"The":[77,131,161],"sparse":[78],"electrode-skin":[79],"disconnections":[80],"rooted":[81],"issues":[83],"such":[84],"as":[85,102],"low":[86],"adhesion,":[87],"sweating,":[88],"hair":[89],"blockage,":[90],"stretch":[93],"challenge":[94],"reliability":[96,171],"scalability":[98],"these":[100],"perception":[104],"unit":[105],"systems.":[108],"This":[109],"paper":[110],"proposes":[111],"a":[112,168],"novel":[113],"deep-learning":[114],"model":[115,137],"providing":[116],"resiliency":[117],"modules,":[120],"which":[121],"can":[122],"be":[123],"used":[124],"proposed":[132,162,188],"3D":[133],"Dilated":[134],"Efficient":[135],"CapsNet":[136],"trains":[138],"on":[139],"an":[140],"augmented":[141],"input":[142],"space":[143],"computationally":[145],"`force'":[146],"network":[148],"learn":[150,156],"channel":[151,159],"dropout":[152,170,182],"variations":[153],"thus":[155],"robustness":[157],"dropout.":[160],"framework":[163],"maintained":[164],"high":[165],"performance":[166,178],"under":[167],"sensor":[169],"study":[172],"conducted.":[173],"Results":[174],"show":[175],"conventional":[176],"models'":[177],"significantly":[179],"degrades":[180],"is":[184],"recovered":[185],"using":[186],"architecture":[189],"training":[192],"paradigm.":[193]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4386942856","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-04-14T06:29:22.372166","created_date":"2023-09-22"}