{"id":"https://openalex.org/W4386907002","doi":"https://doi.org/10.48550/arxiv.2309.09787","title":"Harnessing Collective Intelligence Under a Lack of Cultural Consensus","display_name":"Harnessing Collective Intelligence Under a Lack of Cultural Consensus","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4386907002","doi":"https://doi.org/10.48550/arxiv.2309.09787"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.09787","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"posted-content","indexed_in":["arxiv","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/abs/2309.09787","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5011651595","display_name":"Necdet G\u00fcrkan","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"G\u00fcrkan, Necdet","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5069454833","display_name":"Jordan W. Suchow","orcid":"https://orcid.org/0000-0001-9848-4872"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Suchow, Jordan W.","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11454","display_name":"Cultural Differences and Values","score":0.9621,"subfield":{"id":"https://openalex.org/subfields/3207","display_name":"Social Psychology"},"field":{"id":"https://openalex.org/fields/32","display_name":"Psychology"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11454","display_name":"Cultural Differences and Values","score":0.9621,"subfield":{"id":"https://openalex.org/subfields/3207","display_name":"Social Psychology"},"field":{"id":"https://openalex.org/fields/32","display_name":"Psychology"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10064","display_name":"Complex Network Analysis Techniques","score":0.9507,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9394,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.66559565}],"concepts":[{"id":"https://openalex.org/C2780801425","wikidata":"https://www.wikidata.org/wiki/Q5164392","display_name":"Construct (python library)","level":2,"score":0.7092082},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.66559565},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5564008},{"id":"https://openalex.org/C26760741","wikidata":"https://www.wikidata.org/wiki/Q160402","display_name":"Perception","level":2,"score":0.55148596},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5276807},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.49098733},{"id":"https://openalex.org/C196083921","wikidata":"https://www.wikidata.org/wiki/Q7915758","display_name":"Variance (accounting)","level":2,"score":0.41649},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.4014261},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.384676},{"id":"https://openalex.org/C180747234","wikidata":"https://www.wikidata.org/wiki/Q23373","display_name":"Cognitive psychology","level":1,"score":0.34514666},{"id":"https://openalex.org/C121955636","wikidata":"https://www.wikidata.org/wiki/Q4116214","display_name":"Accounting","level":1,"score":0.0},{"id":"https://openalex.org/C169760540","wikidata":"https://www.wikidata.org/wiki/Q207011","display_name":"Neuroscience","level":1,"score":0.0},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.09787","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2309.09787","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2309.09787","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4388145910","https://openalex.org/W4312490297","https://openalex.org/W4248336175","https://openalex.org/W3009369890","https://openalex.org/W2391445434","https://openalex.org/W2381570729","https://openalex.org/W2366107444","https://openalex.org/W2184617132","https://openalex.org/W2031260042","https://openalex.org/W1976205134"],"abstract_inverted_index":{"Harnessing":[0],"collective":[1,231],"intelligence":[2,232],"to":[3,13,42,85,187],"drive":[4],"effective":[5,192],"decision-making":[6],"and":[7,15,67,97,143,173,190,239],"collaboration":[8],"benefits":[9],"from":[10,213],"the":[11,43,83,144,159,181,207,219,243],"ability":[12,84],"detect":[14],"characterize":[16],"heterogeneity":[17],"in":[18,25,77],"consensus":[19,36,71,145,238],"beliefs.":[20,72],"This":[21],"is":[22,75,92,191],"particularly":[23],"true":[24],"domains":[26,162],"such":[27],"as":[28],"technology":[29],"acceptance":[30],"or":[31,152],"leadership":[32],"perception,":[33],"where":[34],"a":[35,62,122,130,214,225,234],"defines":[37],"an":[38,202,210],"intersubjective":[39],"truth,":[40],"leading":[41],"possibility":[44],"of":[45,51,141,155,165,183,206,218,236,245],"multiple":[46],"\"ground":[47],"truths\"":[48],"when":[49],"subsets":[50,154],"respondents":[52],"sustain":[53],"mutually":[54],"incompatible":[55],"consensuses.":[56],"Cultural":[57,118],"Consensus":[58,119],"Theory":[59,120],"(CCT)":[60],"provides":[61,224],"statistical":[63],"framework":[64],"for":[65,229],"detecting":[66],"characterizing":[68],"these":[69,111],"divergent":[70],"However,":[73],"it":[74,81],"unworkable":[76],"modern":[78],"applications":[79],"because":[80],"lacks":[82],"generalize":[86],"across":[87,161],"even":[88,193],"highly":[89],"similar":[90],"beliefs,":[91],"ineffective":[93],"with":[94,129,194],"sparse":[95,195],"data,":[96],"can":[98],"leverage":[99],"neither":[100],"external":[101],"knowledge":[102],"bases":[103],"nor":[104],"learned":[105],"machine":[106],"representations.":[107],"Here,":[108],"we":[109,200],"overcome":[110],"limitations":[112],"through":[113],"Infinite":[114],"Deep":[115],"Latent":[116],"Construct":[117],"(iDLC-CCT),":[121],"nonparametric":[123],"Bayesian":[124],"model":[125],"that":[126,133,177],"extends":[127],"CCT":[128],"latent":[131],"construct":[132],"maps":[134],"between":[135],"pretrained":[136],"deep":[137],"neural":[138],"network":[139],"embeddings":[140],"entities":[142,149],"beliefs":[146],"regarding":[147],"those":[148],"among":[150],"one":[151],"more":[153],"respondents.":[156],"We":[157,175],"validate":[158],"method":[160],"including":[163],"perceptions":[164],"risk":[166],"sources,":[167],"food":[168],"healthiness,":[169],"leadership,":[170],"first":[171],"impressions,":[172],"humor.":[174],"find":[176],"iDLC-CCT":[178,208],"better":[179],"predicts":[180],"degree":[182],"consensus,":[184],"generalizes":[185],"well":[186],"out-of-sample":[188],"entities,":[189],"data.":[196],"To":[197],"improve":[198],"scalability,":[199],"introduce":[201],"efficient":[203],"hard-clustering":[204],"variant":[205],"using":[209],"algorithm":[211],"derived":[212],"small-variance":[215],"asymptotic":[216],"analysis":[217],"model.":[220],"The":[221],"iDLC-CCT,":[222],"therefore,":[223],"workable":[226],"computational":[227],"foundation":[228],"harnessing":[230],"under":[233],"lack":[235],"cultural":[237],"may":[240],"potentially":[241],"form":[242],"basis":[244],"consensus-aware":[246],"information":[247],"technologies.":[248]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4386907002","counts_by_year":[],"updated_date":"2025-01-04T00:13:10.288611","created_date":"2023-09-21"}